Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrien Van Impe is active.

Publication


Featured researches published by Katrien Van Impe.


Nature Genetics | 2004

Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy

Oleg V. Evgrafov; Irena Mersiyanova; Joy Irobi; Ludo Van Den Bosch; Ines Dierick; Conrad L. Leung; Olga Schagina; Nathalie Verpoorten; Katrien Van Impe; Valeriy P. Fedotov; Elena L. Dadali; Michaela Auer-Grumbach; Christian Windpassinger; Klaus Wagner; Zoran Mitrović; David Hilton-Jones; Kevin Talbot; Jean-Jacques Martin; Natalia Vasserman; Svetlana Tverskaya; Alexander V. Polyakov; Ronald K.H. Liem; Jan Gettemans; Wim Robberecht; Vincent Timmerman

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11–q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20–α-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.


Nature Genetics | 2004

Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy

Joy Irobi; Katrien Van Impe; Pavel Seeman; Albena Jordanova; Ines Dierick; Nathalie Verpoorten; Andrej Michalik; Els De Vriendt; An Jacobs; Veerle Van Gerwen; Krist’l Vennekens; Radim Mazanec; Ivailo Tournev; David Hilton-Jones; Kevin Talbot; Ivo Kremensky; Ludo Van Den Bosch; Wim Robberecht; Joël Vandekerckhove; Christine Van Broeckhoven; Jan Gettemans; Vincent Timmerman

Distal hereditary motor neuropathies are pure motor disorders of the peripheral nervous system resulting in severe atrophy and wasting of distal limb muscles. In two pedigrees with distal hereditary motor neuropathy type II linked to chromosome 12q24.3, we identified the same mutation (K141N) in small heat-shock 22-kDa protein 8 (encoded by HSPB8; also called HSP22). We found a second mutation (K141E) in two smaller families. Both mutations target the same amino acid, which is essential to the structural and functional integrity of the small heat-shock protein αA-crystallin. This positively charged residue, when mutated in other small heat-shock proteins, results in various human disorders. Coimmunoprecipitation experiments showed greater binding of both HSPB8 mutants to the interacting partner HSPB1. Expression of mutant HSPB8 in cultured cells promoted formation of intracellular aggregates. Our findings provide further evidence that mutations in heat-shock proteins have an important role in neurodegenerative disorders.


Traffic | 2005

Nuclear Actin-Binding Proteins as Modulators of Gene Transcription

Jan Gettemans; Katrien Van Impe; Veerle Delanote; Thomas Hubert; Joël Vandekerckhove; Veerle De Corte

Dynamic transformations in the organization of the cellular microfilament system are the driving force behind fundamental biological processes such as cellular motility, cytokinesis, wound healing and secretion. Eukaryotic cells express a plethora of actin‐binding proteins (ABPs) allowing cells to control the organization of the actin cytoskeleton in a flexible manner. These structural proteins were, not surprisingly, originally described as (major) constituents of the cytoplasm. However, in recent years, there has been a steady flow of reports detailing not only translocation of ABPs into and out of the nucleus but also describing their role in the nuclear compartment. This review focuses on recent developments pertaining to nucleocytoplasmic transport of ABPs, including their mode of translocation and nuclear function. In particular, evidence that structurally and functionally unrelated cytoplasmic ABPs regulate transcription activation by various nuclear (steroid hormone) receptors is steadily accruing. Furthermore, the recent finding that actin is a necessary component of the RNA polymerase II‐containing preinitiation complex opens up new opportunities for nuclear ABPs in gene transcription regulation.


Journal of Cell Science | 2004

Increased importin-beta-dependent nuclear import of the actin modulating protein CapG promotes cell invasion

Veerle De Corte; Katrien Van Impe; Erik Bruyneel; Ciska Boucherie; Marcus Mareel; Joël Vandekerckhove; Jan Gettemans

CapG (gCap39) is a ubiquitous gelsolin-family actin modulating protein involved in cell signalling, receptor-mediated membrane ruffling, phagocytosis and motility. CapG is the only gelsolin-related actin binding protein that localizes constitutively to both nucleus and cytoplasm. Structurally related proteins like severin and fragmin are cytoplasmic because they contain a nuclear export sequence that is absent in CapG. Increased CapG expression has been reported in some cancers but a causal role for CapG in tumour development, including invasion and metastasis, has not been explored. We show that moderate expression of green fluorescent protein-tagged CapG (CapG-EGFP) in epithelial cells induces invasion into collagen type I and precultured chick heart fragments. Nuclear export sequence-tagged CapG-EGFP fails to induce invasion, whereas point mutations in the nuclear export sequence permitting nuclear re-entry restore cellular invasion. Nuclear import of CapG is energy-dependent and requires the cytosolic receptor importin β but not importin α. Nuclear CapG does not possess intrinsic transactivation activity but suppresses VP16 transactivation of a luciferase reporter gene in a dose-dependent manner. Furthermore, invasion requires signalling through the Ras-phosphoinositide 3-kinase pathway and Cdc42 or RhoA, but not Rac1. We show for the first time active nuclear import of an actin binding protein, and our findings point to a role for nuclear CapG in eliciting invasion, possibly through interfering with the cellular transcription machinery.


Breast Cancer Research | 2013

A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis

Katrien Van Impe; Jonas Bethuyne; Steven K. Cool; Francis Impens; David Ruano-Gallego; Olivier De Wever; Berlinda Vanloo; Marleen Van Troys; Kathleen Lambein; Ciska Boucherie; Evelien Martens; Olivier Zwaenepoel; Gholamreza Hassanzadeh-Ghassabeh; Joël Vandekerckhove; Kris Gevaert; Luis Ángel Fernández; Niek N. Sanders; Jan Gettemans

IntroductionAberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit.MethodsWe raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading.ResultsWith G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS).ConclusionsCapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers a fast track for gauging the therapeutic merit of drug targets. Mapping of the nanobody-CapG interface may provide a platform for rational design of pharmacologic compounds.


Traffic | 2008

A New Role for Nuclear Transport Factor 2 and Ran: Nuclear Import of CapG

Katrien Van Impe; Thomas Hubert; Veerle De Corte; Berlinda Vanloo; Ciska Boucherie; Joël Vandekerckhove; Jan Gettemans

The small GTPase Ran plays a central role in nucleocytoplasmic transport. Nuclear transport of Ran itself depends on nuclear transport factor 2 (NTF2). Here, we report that NTF2 and Ran control nuclear import of the filamentous actin capping protein CapG. In digitonin‐permeabilized cells, neither GTPγS nor the GTP hydrolysis‐deficient Ran mutant RanQ69L affect transit of CapG to the nucleus in the presence of cytosol. Obstruction of nucleoporins prevents nuclear transport of CapG, and we show that CapG binds to nucleoporin62. In addition, CapG interacts with NTF2, associates with Ran and is furthermore able to bind the NTF2–Ran complex. NTF2–Ran interaction is required for CapG nuclear import. This is corroborated by a NTF2 mutant with reduced affinity for Ran and a Ran mutant that does not bind NTF2, both of which prevent CapG import. Thus, a ubiquitously expressed protein shuttles to the nucleus through direct association with NTF2 and Ran. The role of NTF2 may therefore not be solely confined to sustaining the Ran gradient in cells.


Biochemical and Biophysical Research Communications | 2009

The actin-capping protein CapG localizes to microtubule-dependent organelles during the cell cycle.

Thomas Hubert; Katrien Van Impe; Joël Vandekerckhove; Jan Gettemans

Extensive cross-talk between the actin and the microtubule cytoskeletons has been reported. Especially in mitosis, processes dependent on actin- and microtubule-based structures alternate and regulate each other in a complex cascade leading to division into two daughter cells. Here, we have studied the subcellular localization of the filamentous actin-capping protein CapG. Fluorescence microscopy of endogenous CapG and EGFP-tagged CapG revealed CapG localization at the mother centriole in interphase, the mitotic spindle in mitosis and the midbody ring in abscission. Surprisingly, nucleoporin Nup62, an interaction partner of CapG, also localized to the midbody ring at the end of abscission and colocalized with CapG. We propose a role for the actin-binding protein CapG as a mediator of cross-talk between the actin cytoskeleton and microtubule-based organelles that regulate cell division.


Cytoskeleton | 2013

Mapping cytoskeletal protein function in cells by means of nanobodies

Isabel Van Audenhove; Katrien Van Impe; David Ruano-Gallego; Sarah De Clercq; Kevin De Muynck; Berlinda Vanloo; Hanne Verstraete; Luis Ángel Fernández; Jan Gettemans

Nanobodies or VHHs are single domain antigen binding fragments derived from heavy‐chain antibodies naturally occurring in species of the Camelidae. Due to their ease of cloning, high solubility and intrinsic stability, they can be produced at low cost. Their small size, combined with high affinity and antigen specificity, enables recognition of a broad range of structural (undruggable) proteins and enzymes alike. Focusing on two actin binding proteins, gelsolin and CapG, we summarize a general protocol for the generation, cloning and production of nanobodies. Furthermore, we describe multiple ways to characterize antigen‐nanobody binding in more detail and we shed light on some applications with recombinant nanobodies. The use of nanobodies as intrabodies is clarified through several case studies revealing new cytoskeletal protein properties and testifying to the utility of nanobodies as intracellular bona fide protein inhibitors. Moreover, as nanobodies can traverse the plasma membrane of eukaryotic cells by means of the enteropathogenic E. coli type III protein secretion system, we show that in this promising way of nanobody delivery, actin pedestal formation can be affected following nanobody injection.


FEBS Letters | 2005

A monopartite nuclear localization sequence regulates nuclear targeting of the actin binding protein myopodin

Ariane De Ganck; Thomas Hubert; Katrien Van Impe; Danny Geelen; Joël Vandekerckhove; Veerle De Corte; Jan Gettemans

Myopodin is an actin bundling protein that shuttles between nucleus and cytoplasm in response to cell stress or during differentiation. Here, we show that the myopodin sequence 58KKRRRRARK66, when tagged to either enhanced green fluorescent protein (EGFP) or to enhanced cyan fluorescent protein‐CapG (ECFPCapG), is able to target these proteins to the nucleolus in HeLa or HEK293T cells. By contrast, 58KKRR61‐ECFP‐CapG accumulates in the nucleus. Mutation of 58KKRRRRARK66 into alanine residues blocks myopodin nuclear import and promotes formation of cytoplasmic actin filaments. A second putative nuclear localization sequence, 612KTSKKKGKK620, displays much weaker activity in a heterologous context, and appears not to be functional in the full length protein. Thus myopodin nuclear translocation is dependent on a monopartite nuclear localization sequence.


Traffic | 2005

Molecular Basis for Dissimilar Nuclear Trafficking of the Actin‐Bundling Protein Isoforms T‐ and L‐Plastin

Veerle Delanote; Katrien Van Impe; Veerle De Corte; Erik Bruyneel; Guillaume Vetter; Ciska Boucherie; Marc Mareel; Joël Vandekerckhove; Evelyne Friederich; Jan Gettemans

T‐ and L‐plastin are highly similar actin‐bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T‐plastin localizes predominantly to the cytoplasm, whereas L‐plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T‐plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev‐like nuclear export sequence (NES) in T‐plastin that is able to export an otherwise nuclear protein in an LMB‐dependent manner. Deletion of the NES promotes nuclear accumulation of T‐plastin. Mutation of residues L17, F21 or L26 in the T‐plastin NES inhibits nuclear efflux. L‐plastin harbors a less conserved NES and lacks the F21 T‐plastin residue. Insertion of a Phe residue in the L‐plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells.

Collaboration


Dive into the Katrien Van Impe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Bruyneel

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge