Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrijn Van Deun is active.

Publication


Featured researches published by Katrijn Van Deun.


PLOS ONE | 2008

Using Ribosomal Protein Genes as Reference: A Tale of Caution

Lieven Thorrez; Katrijn Van Deun; Léon-Charles Tranchevent; Leentje Van Lommel; Kristof Engelen; Kathleen Marchal; Yves Moreau; Iven Van Mechelen; Frans Schuit

Background Housekeeping genes are needed in every tissue as their expression is required for survival, integrity or duplication of every cell. Housekeeping genes commonly have been used as reference genes to normalize gene expression data, the underlying assumption being that they are expressed in every cell type at approximately the same level. Often, the terms “reference genes” and “housekeeping genes” are used interchangeably. In this paper, we would like to distinguish between these terms. Consensus is growing that housekeeping genes which have traditionally been used to normalize gene expression data are not good reference genes. Recently, ribosomal protein genes have been suggested as reference genes based on a meta-analysis of publicly available microarray data. Methodology/Principal Findings We have applied several statistical tools on a dataset of 70 microarrays representing 22 different tissues, to assess and visualize expression stability of ribosomal protein genes. We confirmed the housekeeping status of these genes, but further estimated expression stability across tissues in order to assess their potential as reference genes. One- and two-way ANOVA revealed that all ribosomal protein genes have significant expression variation across tissues and exhibit tissue-dependent expression behavior as a group. Via multidimensional unfolding analysis, we visualized this tissue-dependency. In addition, we explored mechanisms that may cause tissue dependent effects of individual ribosomal protein genes. Conclusions/Significance Here we provide statistical and biological evidence that ribosomal protein genes exhibit important tissue-dependent variation in mRNA expression. Though these genes are most stably expressed of all investigated genes in a meta-analysis they cannot be considered true reference genes.


BMC Bioinformatics | 2009

A structured overview of simultaneous component based data integration

Katrijn Van Deun; Age K. Smilde; Mariët J. van der Werf; Henk A. L. Kiers; Iven Van Mechelen

BackgroundData integration is currently one of the main challenges in the biomedical sciences. Often different pieces of information are gathered on the same set of entities (e.g., tissues, culture samples, biomolecules) with the different pieces stemming, for example, from different measurement techniques. This implies that more and more data appear that consist of two or more data arrays that have a shared mode. An integrative analysis of such coupled data should be based on a simultaneous analysis of all data arrays. In this respect, the family of simultaneous component methods (e.g., SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-P) is a natural choice. Yet, different simultaneous component methods may lead to quite different results.ResultsWe offer a structured overview of simultaneous component methods that frames them in a principal components setting such that both the common core of the methods and the specific elements with regard to which they differ are highlighted. An overview of principles is given that may guide the data analyst in choosing an appropriate simultaneous component method. Several theoretical and practical issues are illustrated with an empirical example on metabolomics data for Escherichia coli as obtained with different analytical chemical measurement methods.ConclusionOf the aspects in which the simultaneous component methods differ, pre-processing and weighting are consequential. Especially, the type of weighting of the different matrices is essential for simultaneous component analysis. These types are shown to be linked to different specifications of the idea of a fair integration of the different coupled arrays.


BMC Bioinformatics | 2011

A flexible framework for sparse simultaneous component based data integration

Katrijn Van Deun; Tom F. Wilderjans; Robert A. van den Berg; Anestis Antoniadis; Iven Van Mechelen

Abstract1 BackgroundHigh throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account.2 ResultsWe propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks.3 ConclusionSparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are exclusively tied to one data platform (group lasso approach) as well as structures that involve all data platforms (Elitist lasso approach).4 AvailabilityThe additional file contains a MATLAB implementation of the sparse simultaneous component method.


PLOS ONE | 2012

DISCO-SCA and Properly Applied GSVD as Swinging Methods to Find Common and Distinctive Processes

Katrijn Van Deun; Iven Van Mechelen; Lieven Thorrez; Martijn Schouteden; Bart De Moor; Mariët J. van der Werf; Lieven De Lathauwer; Age K. Smilde; Henk A. L. Kiers

Background In systems biology it is common to obtain for the same set of biological entities information from multiple sources. Examples include expression data for the same set of orthologous genes screened in different organisms and data on the same set of culture samples obtained with different high-throughput techniques. A major challenge is to find the important biological processes underlying the data and to disentangle therein processes common to all data sources and processes distinctive for a specific source. Recently, two promising simultaneous data integration methods have been proposed to attain this goal, namely generalized singular value decomposition (GSVD) and simultaneous component analysis with rotation to common and distinctive components (DISCO-SCA). Results Both theoretical analyses and applications to biologically relevant data show that: (1) straightforward applications of GSVD yield unsatisfactory results, (2) DISCO-SCA performs well, (3) provided proper pre-processing and algorithmic adaptations, GSVD reaches a performance level similar to that of DISCO-SCA, and (4) DISCO-SCA is directly generalizable to more than two data sources. The biological relevance of DISCO-SCA is illustrated with two applications. First, in a setting of comparative genomics, it is shown that DISCO-SCA recovers a common theme of cell cycle progression and a yeast-specific response to pheromones. The biological annotation was obtained by applying Gene Set Enrichment Analysis in an appropriate way. Second, in an application of DISCO-SCA to metabolomics data for Escherichia coli obtained with two different chemical analysis platforms, it is illustrated that the metabolites involved in some of the biological processes underlying the data are detected by one of the two platforms only; therefore, platforms for microbial metabolomics should be tailored to the biological question. Conclusions Both DISCO-SCA and properly applied GSVD are promising integrative methods for finding common and distinctive processes in multisource data. Open source code for both methods is provided.


Advanced Data Analysis and Classification | 2014

A comparison of five recursive partitioning methods to find person subgroups involved in meaningful treatment---subgroup interactions

Lisa Doove; E. Dusseldorp; Katrijn Van Deun; Iven Van Mechelen

In case multiple treatment alternatives are available for some medical problem, the detection of treatment–subgroup interactions (i.e., relative treatment effectiveness varying over subgroups of persons) is of key importance for personalized medicine and the development of optimal treatment assignment strategies. Randomized Clinical Trials (RCT) often go without clear a priori hypotheses on the subgroups involved in treatment–subgroup interactions, and with a large number of pre-treatment characteristics in the data. In such situations, relevant subgroups (defined in terms of pre-treatment characteristics) are to be induced during the actual data analysis. This comes down to a problem of cluster analysis, with the goal of this analysis being to find clusters of persons that are involved in meaningful treatment–person cluster interactions. For such a cluster analysis, five recently proposed methods can be used, all being of a recursive partitioning type. However, these five methods have been developed almost independently, and the relations between them are not yet understood. The present paper closes this gap. It starts by outlining the basic principles behind each method, and by illustrating it with an application on an RCT data set on two treatment strategies for substance abuse problems. Next, it presents a comparison of the methods, hereby focusing on major similarities and differences. The discussion concludes with practical advice for end users with regard to the selection of a suitable method, and with an important challenge for future research in this area.


Behavior Research Methods | 2013

SCA with rotation to distinguish common and distinctive information in linked data

Martijn Schouteden; Katrijn Van Deun; Sven Pattyn; Iven Van Mechelen

Often data are collected that consist of different blocks that all contain information about the same entities (e.g., items, persons, or situations). In order to unveil both information that is common to all data blocks and information that is distinctive for one or a few of them, an integrated analysis of the whole of all data blocks may be most useful. Interesting classes of methods for such an approach are simultaneous-component and multigroup factor analysis methods. These methods yield dimensions underlying the data at hand. Unfortunately, however, in the results from such analyses, common and distinctive types of information are mixed up. This article proposes a novel method to disentangle the two kinds of information, by making use of the rotational freedom of component and factor models. We illustrate this method with data from a cross-cultural study of emotions.


Behavior Research Methods | 2013

Performing DISCO-SCA to search for distinctive and common information in linked data

Martijn Schouteden; Katrijn Van Deun; Tom F. Wilderjans; Iven Van Mechelen

Behavioral researchers often obtain information about the same set of entities from different sources. A main challenge in the analysis of such data is to reveal, on the one hand, the mechanisms underlying all of the data blocks under study and, on the other hand, the mechanisms underlying a single data block or a few such blocks only (i.e., common and distinctive mechanisms, respectively). A method called DISCO-SCA has been proposed by which such mechanisms can be found. The goal of this article is to make the DISCO-SCA method more accessible, in particular for applied researchers. To this end, first we will illustrate the different steps in a DISCO-SCA analysis, with data stemming from the domain of psychiatric diagnosis. Second, we will present in this article the DISCO-SCA graphical user interface (GUI). The main benefits of the DISCO-SCA GUI are that it is easy to use, strongly facilitates the choice of model selection parameters (such as the number of mechanisms and their status as being common or distinctive), and is freely available.


Expert Review of Vaccines | 2017

Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity.

Margherita Coccia; Catherine Collignon; Caroline Hervé; Aurélie Chalon; Iain Welsby; Sophie Detienne; Mary J. van Helden; Sheetij Dutta; Christopher J. Genito; Norman C. Waters; Katrijn Van Deun; Age K. Smilde; Robert A. van den Berg; David Franco; Patricia Bourguignon; Sandra Morel; Nathalie Garçon; Bart N. Lambrecht; Stanislas Goriely; Robbert G. van der Most; Arnaud Didierlaurent

Combining immunostimulants in adjuvants can improve the quality of the immune response to vaccines. Here, we report a unique mechanism of molecular and cellular synergy between a TLR4 ligand, 3-O-desacyl-4’-monophosphoryl lipid A (MPL), and a saponin, QS-21, the constituents of the Adjuvant System AS01. AS01 is part of the malaria and herpes zoster vaccine candidates that have demonstrated efficacy in phase III studies. Hours after injection of AS01-adjuvanted vaccine, resident cells, such as NK cells and CD8+ T cells, release IFNγ in the lymph node draining the injection site. This effect results from MPL and QS-21 synergy and is controlled by macrophages, IL-12 and IL-18. Depletion strategies showed that this early IFNγ production was essential for the activation of dendritic cells and the development of Th1 immunity by AS01-adjuvanted vaccine. A similar activation was observed in the lymph node of AS01-injected macaques as well as in the blood of individuals receiving the malaria RTS,S vaccine. This mechanism, previously described for infections, illustrates how adjuvants trigger naturally occurring pathways to improve the efficacy of vaccines.Adjuvants: Vaccine components working in synergy to improve beneficial effects of vaccinationA mechanism is revealed by which vaccine components co-operate to stimulate the immune system and improve vaccine efficacy. Some vaccines are formulated with adjuvants—compounds that induce a greater immune response to the vaccine and help to elicit greater protection against future infections. Arnaud Didierlaurent and his team of researchers at GSK Vaccines, Belgium, demonstrate that the two immunostimulants in the adjuvant AS01, used in several recently developed vaccines, works in tandem to trigger the activation of important immune system moderators. The synergistic effect of the immunostimulants modulate specific immune cells at the site of the vaccination to better prepare the body against future infection. Studies such as this allow us to better understand how vaccines work and lay the foundation for more informed research into future vaccine development.


BMC Bioinformatics | 2009

Integrating functional genomics data using maximum likelihood based simultaneous component analysis

Robert A. van den Berg; Iven Van Mechelen; Tom F. Wilderjans; Katrijn Van Deun; Henk A. L. Kiers; Age K. Smilde

BackgroundIn contemporary biology, complex biological processes are increasingly studied by collecting and analyzing measurements of the same entities that are collected with different analytical platforms. Such data comprise a number of data blocks that are coupled via a common mode. The goal of collecting this type of data is to discover biological mechanisms that underlie the behavior of the variables in the different data blocks. The simultaneous component analysis (SCA) family of data analysis methods is suited for this task. However, a SCA may be hampered by the data blocks being subjected to different amounts of measurement error, or noise. To unveil the true mechanisms underlying the data, it could be fruitful to take noise heterogeneity into consideration in the data analysis. Maximum likelihood based SCA (MxLSCA-P) was developed for this purpose. In a previous simulation study it outperformed normal SCA-P. This previous study, however, did not mimic in many respects typical functional genomics data sets, such as, data blocks coupled via the experimental mode, more variables than experimental units, and medium to high correlations between variables. Here, we present a new simulation study in which the usefulness of MxLSCA-P compared to ordinary SCA-P is evaluated within a typical functional genomics setting. Subsequently, the performance of the two methods is evaluated by analysis of a real life Escherichia coli metabolomics data set.ResultsIn the simulation study, MxLSCA-P outperforms SCA-P in terms of recovery of the true underlying scores of the common mode and of the true values underlying the data entries. MxLSCA-P further performed especially better when the simulated data blocks were subject to different noise levels. In the analysis of an E. coli metabolomics data set, MxLSCA-P provided a slightly better and more consistent interpretation.ConclusionMxLSCA-P is a promising addition to the SCA family. The analysis of coupled functional genomics data blocks could benefit from its ability to take different noise levels per data block into consideration and improve the recovery of the true patterns underlying the data. Moreover, the maximum likelihood based approach underlying MxLSCA-P could be extended to custom-made solutions to specific problems encountered.


BMC Bioinformatics | 2007

Joint mapping of genes and conditions via multidimensional unfolding analysis

Katrijn Van Deun; Kathleen Marchal; Willem J. Heiser; Kristof Engelen; Iven Van Mechelen

BackgroundMicroarray compendia profile the expression of genes in a number of experimental conditions. Such data compendia are useful not only to group genes and conditions based on their similarity in overall expression over profiles but also to gain information on more subtle relations between genes and conditions. Getting a clear visual overview of all these patterns in a single easy-to-grasp representation is a useful preliminary analysis step: We propose to use for this purpose an advanced exploratory method, called multidimensional unfolding.ResultsWe present a novel algorithm for multidimensional unfolding that overcomes both general problems and problems that are specific for the analysis of gene expression data sets. Applying the algorithm to two publicly available microarray compendia illustrates its power as a tool for exploratory data analysis: The unfolding analysis of a first data set resulted in a two-dimensional representation which clearly reveals temporal regulation patterns for the genes and a meaningful structure for the time points, while the analysis of a second data set showed the algorithms ability to go beyond a mere identification of those genes that discriminate between different patient or tissue types.ConclusionMultidimensional unfolding offers a useful tool for preliminary explorations of microarray data: By relying on an easy-to-grasp low-dimensional geometric framework, relations among genes, among conditions and between genes and conditions are simultaneously represented in an accessible way which may reveal interesting patterns in the data. An additional advantage of the method is that it can be applied to the raw data without necessitating the choice of suitable genewise transformations of the data.

Collaboration


Dive into the Katrijn Van Deun's collaboration.

Top Co-Authors

Avatar

Iven Van Mechelen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eva Ceulemans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marlies Vervloet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Robert A. van den Berg

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lieven Thorrez

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lisa Doove

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Martijn Schouteden

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Van Den Noortgate

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jo Goedhuys

Catholic University of Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge