Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Heer is active.

Publication


Featured researches published by Katrin Heer.


Ecology Letters | 2017

Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

Christina L. Richards; Conchita Alonso; Claude Becker; Oliver Bossdorf; Etienne Bucher; Maria Colomé-Tatché; Walter Durka; Jan Engelhardt; Bence Gáspár; Andreas Gogol-Döring; Ivo Grosse; Thomas P. van Gurp; Katrin Heer; Ilkka Kronholm; Christian Lampei; Vít Latzel; Marie Mirouze; Lars Opgenoorth; Ovidiu Paun; Sonja J. Prohaska; Stefan A. Rensing; Peter F. Stadler; Emiliano Trucchi; Kristian K. Ullrich; Koen J. F. Verhoeven

Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.


Journal of Mammalogy | 2015

Effects of land use on bat diversity in a complex plantation-forest landscape in northeastern Brazil

Katrin Heer; Maria Helbig-Bonitz; Renato G. Fernandes; Marco A. R. Mello; Elisabeth K. V. Kalko

In fragmented areas, the persistence of different species depends on their ability to use the surrounding matrix either as a corridor or as a foraging habitat. We assessed how species richness and abundance of Neotropical bats differ among forest fragments and rubber plantations under different management regimes. Our study site was located in a heterogeneous agricultural area in the Atlantic Forest of Bahia, northeastern Brazil. By combining mist netting and acoustic monitoring as complementary techniques, we caught 28 phyllostomid species and recorded 21 aerial insectivorous species, which either forage in open space or close to forests. Open space species were equally abundant and diverse in all land use types. In contrast, assemblages of phyllostomid and aerial insectivorous forest species differed significantly among habitats, with the highest species richness recorded in forest fragments. We identified a number of forest specialists in forest fragments, which indicates a relatively intact bat fauna. In intensively used rubber-cacao plantation, we found surprisingly high bat abundance and diversity, despite the shortage of resources for bats. Our results also indicate that patches of secondary vegetation around rubber plantations are important landscape features for bats and might contribute to the persistence of highly diverse bat assemblages. We suggest that bats do not perceive plantations as a hostile matrix, but probably use them as corridors between forest fragments and patches of secondary vegetation.


PLOS ONE | 2015

Spatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae) Inhabiting Neotropical Forests

Katrin Heer; Elisabeth K. V. Kalko; Larissa Albrecht; Roosevelt García-Villacorta; Felix C. Staeps; Edward Allen Herre; Christopher W. Dick

Wind-borne pollinating wasps (Agaonidae) can transport fig (Ficus sp., Moraceae) pollen over enormous distances (> 100 km). Because of their extensive breeding areas, Neotropical figs are expected to exhibit weak patterns of genetic structure at local and regional scales. We evaluated genetic structure at the regional to continental scale (Panama, Costa Rica, and Peru) for the free-standing fig species Ficus insipida. Genetic differentiation was detected only at distances > 300 km (Jost´s Dest = 0.68 ± 0.07 & FST = 0.30 ± 0.03 between Mesoamerican and Amazonian sites) and evidence for phylogeographic structure (R ST>>permuted R ST) was only significant in comparisons between Central and South America. Further, we assessed local scale spatial genetic structure (SGS, d ≤ 8 km) in Panama and developed an agent-based model parameterized with data from F. insipida to estimate minimum pollination distances, which determine the contribution of pollen dispersal on SGS. The local scale data for F. insipida was compared to SGS data collected for an additional free-standing fig, F. yoponensis (subgenus Pharmacosycea), and two species of strangler figs, F. citrifolia and F. obtusifolia (subgenus Urostigma) sampled in Panama. All four species displayed significant SGS (mean Sp = 0.014 ± 0.012). Model simulations indicated that most pollination events likely occur at distances > > 1 km, largely ruling out spatially limited pollen dispersal as the determinant of SGS in F. insipida and, by extension, the other fig species. Our results are consistent with the view that Ficus develops fine-scale SGS primarily as a result of localized seed dispersal and/or clumped seedling establishment despite extensive long-distance pollen dispersal. We discuss several ecological and life history factors that could have species- or subgenus-specific impacts on the genetic structure of Neotropical figs.


American Journal of Botany | 2012

Anonymous and EST-based microsatellite DNA markers that transfer broadly across the fig tree genus (Ficus, Moraceae)

Katrin Heer; Carlos A. Machado; Anna G. Himler; Edward Allen Herre; Elisabeth K. V. Kalko; Christopher W. Dick

PREMISE OF THE STUDY We developed a set of microsatellite markers for broad utility across the species-rich pantropical tree genus Ficus (fig trees). The markers were developed to study population structure, hybridization, and gene flow in neotropical species. METHODS AND RESULTS We developed seven novel primer sets from expressed sequence tag (EST) libraries of F. citrifolia and F. popenoei (subgen. Urostigma sect. Americana) and optimized five previously developed anonymous loci for cross-species amplification. The markers were successfully tested on four species from the basal subgenus Pharmacosycea sect. Pharmacosycea (F. insipida, F. maxima, F. tonduzii, and F. yoponensis) and seven species of the derived subgenus Urostigma (F. citrifolia, F. colubrinae, F. costaricana, F. nymphaeifolia, F. obtusifolia, F. pertusa, and F. popenoei). The 12 markers amplified consistently and displayed polymorphism in all the species. CONCLUSIONS This set of microsatellite markers is transferable across the phylogenetic breadth of Ficus, and should therefore be useful for studies of population structure and gene flow in approximately 750 fig species worldwide.


Molecular Ecology | 2018

Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir ( Abies alba Mill.)

Katrin Heer; D. Behringer; Alma Piermattei; Claus Bässler; R. Brandl; Bruno Fady; Hans Jehl; Sascha Liepelt; S. Lorch; Andrea Piotti; G. G. Vendramin; M. Weller; Birgit Ziegenhagen; Ulf Büntgen; Lars Opgenoorth

Genetic association studies in forest trees would greatly benefit from information on the response of trees to environmental stressors over time, which can be provided by dendroecological analysis. Here, we jointly analysed dendroecological and genetic data of surviving silver fir trees to explore the genetic basis of their response to the iconic stress episode of the 1970s and 1980s that led to large‐scale forest dieback in Central Europe and has been attributed to air pollution. Specifically, we derived dendrophenotypic measures from 190 trees in the Bavarian Forest that characterize the resistance, resilience and recovery during this growth depression, and in the drought year in 1976. By focusing on relative growth changes of trees and by standardizing the dendrophenotypes within stands, we accounted for variation introduced by micro‐ and macroscale environmental differences. We associated the dendrophenotypes with single nucleotide polymorphisms (SNPs) in candidate genes using general linear models (GLMs) and the machine learning algorithm random forest with subsequent feature selection. Most trees at our study sites experienced a severe growth decline from 1974 until the mid‐1980s with minimum values during the drought year. Fifteen genes were associated with the dendrophenotypes, including genes linked to photosynthesis and drought stress. With our study, we show that dendrophenotypes can be a powerful resource for genetic association studies that permit to account for micro‐ and macroenvironmental variation when data are derived from natural populations. We call for a wider collaboration of dendroecologists and forest geneticists to integrate individual tree‐level dendrophenotypes in genetic association studies.


PLOS ONE | 2017

Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species

Paloma Torroba-Balmori; Katharina B. Budde; Katrin Heer; Santiago C. González-Martínez; Sanna Olsson; Caroline Scotti-Saintagne; Maxime Casalis; Bonaventure Sonké; Christopher W. Dick; Myriam Heuertz

The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.


Molecular Ecology | 2017

Effects of zoochory on the spatial genetic structure of plant populations

Tiziana A. Gelmi-Candusso; Eckhard W. Heymann; Katrin Heer

Spatial genetic structure (SGS) of plants results from the nonrandom distribution of related individuals. SGS provides information on gene flow and spatial patterns of genetic diversity within populations. Seed dispersal creates the spatial template for plant distribution. Thus, in zoochorous plants, dispersal mode and disperser behaviour might have a strong impact on SGS. However, many studies only report the taxonomic group of seed dispersers, without further details. The recent increase in studies on SGS provides the opportunity to review findings and test for the influence of dispersal mode, taxonomic affiliation of dispersers and their behaviour. We compared the proportions of studies with SGS among groups and tested for differences in strength of SGS using Sp statistics. The presence of SGS differed among taxonomic groups, with reduced presence in plants dispersed by birds. Strength of SGS was instead significantly influenced by the behaviour of seed dispersal vectors, with higher SGS in plant species dispersed by animals with behavioural traits that result in short seed dispersal distances. We observed high variance in the strength of SGS in plants dispersed by animals that actively or passively accumulate seeds. Additionally, we found SGS was also affected by pollination and marker type used. Our study highlights the importance of vector behaviour on SGS even in the presence of variance created by other factors. Thus, more detailed information on the behaviour of seed dispersers would contribute to better understand which factors shape the spatial scale of gene flow in animal‐dispersed plant species.


Science of The Total Environment | 2019

Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations

Camilla Avanzi; Alma Piermattei; Andrea Piotti; Ulf Büntgen; Katrin Heer; Lars Opgenoorth; Ilaria Spanu; Carlo Urbinati; Giovanni G. Vendramin; Stefano Leonardi

Cambial growth is a phenotypic trait influenced by various physiological processes, numerous biotic and abiotic drivers, as well as by the genetic background. By archiving the outcome of such complex interplay, tree-rings are an exceptional resource for addressing individual long-term growth responses to changing environments and climate. Disentangling the effects of the different drivers of tree growth, however, remains challenging because of the lack of multidisciplinary data. Here, we combine individual dendrochronological, genetic and spatial data to assess the relative importance of genetic similarity and spatial proximity on Norway spruce (Picea abies (L.) Karst.) growth performances. We intensively sampled five plots from two populations in southern and central Europe, characterizing a total of 482 trees. A two-step analytical framework was developed. First, the effects of climate and tree age on tree-ring width (TRW) were estimated for each individual using a random slope linear mixed-effects model. Individual parameters were then tested against genetic and spatial variables by Mantel tests, partial redundancy analyses and variance partitioning. Our modelling approach successfully captured a large fraction of variance in TRW (conditional R2 values up to 0.94) which was largely embedded in inter-individual differences. All statistical approaches consistently showed that genetic similarity was not related to variation in the individual parameters describing growth responses. In contrast, up to 29% of the variance of individual parameters was accounted by spatial variables, revealing that microenvironmental features are more relevant than genetic similarity in determining similar growth patterns. Our study highlights both the advantages of modelling dendrochronological data at the individual level and the relevance of microenvironmental variation on individual growth patterns. These two aspects should be carefully considered in future multidisciplinary studies on growth dynamics in natural populations.


Ecology and Evolution | 2018

Detection of somatic epigenetic variation in Norway spruce via targeted bisulfite sequencing

Katrin Heer; Kristian K. Ullrich; Manuel Hiss; Sascha Liepelt; Ralf Schulze Brüning; Jiabin Zhou; Lars Opgenoorth; Stefan A. Rensing

Abstract Epigenetic mechanisms represent a possible mechanism for achieving a rapid response of long‐lived trees to changing environmental conditions. However, our knowledge on plant epigenetics is largely limited to a few model species. With increasing availability of genomic resources for many tree species, it is now possible to adopt approaches from model species that permit to obtain single‐base pair resolution data on methylation at a reasonable cost. Here, we used targeted bisulfite sequencing (TBS) to study methylation patterns in the conifer species Norway spruce (Picea abies). To circumvent the challenge of disentangling epigenetic and genetic differences, we focused on four clone pairs, where clone members were growing in different climatic conditions for 24 years. We targeted >26.000 genes using TBS and determined the performance and reproducibility of this approach. We characterized gene body methylation and compared methylation patterns between environments. We found highly comparable capture efficiency and coverage across libraries. Methylation levels were relatively constant across gene bodies, with 21.3 ± 0.3%, 11.0 ± 0.4% and 1.3 ± 0.2% in the CG, CHG, and CHH context, respectively. The variance in methylation profiles did not reveal consistent changes between environments, yet we could identify 334 differentially methylated positions (DMPs) between environments. This supports that changes in methylation patterns are a possible pathway for a plant to respond to environmental change. After this successful application of TBS in Norway spruce, we are confident that this approach can contribute to broaden our knowledge of methylation patterns in natural tree populations.


bioRxiv | 2017

Linking Dendroecology And Association Genetics: Stress Responses Archived In Tree Rings Associate With SNP Genotypes In Abies alba (Mill.)

Katrin Heer; David Behringer; Alma Piermattei; Claus Bässler; Bruno Fady; Hans Jehl; Sascha Liepelt; Sven Lorch; Andrea Piotti; G. G. Vendramin; Max Weller; Birgit Ziegenhagen; Ulf Büntgen; Lars Opgenoorth

Genetic association studies in forest tress would greatly benefit from information on tree response to environmental stressors over time. Dendroecology can close this gap by providing such time series measurements. Here, we jointly analyzed dendroecological and genetic data to explore the genetic basis of resistance, recovery and resilience to episodic stress in silver fir. We used individual level tree-ring data to characterize the growth patterns of surviving silver fir (Abies alba) during the forest dieback in the 1970s and 1980s in Central Europe and associated them with SNPs in candidate genes. Most trees at our study sites in the Bavarian Forest experienced severe growth decline from 1974 until the mid-1980s, which peaked during the drought year of 1976. Using the machine learning algorithm random forest, we identified 15 candidate genes that were associated with the variance in resistance, resilience and recovery among trees in this period. With our study we show that the unique possibility of phenotypic time series archived in tree-rings are a powerful resource in genetic association studies. We call for a closer collaboration of dendroceologists and forest geneticists to focus on integrating individual tree level signals in genetic association studies in long lived trees.

Collaboration


Dive into the Katrin Heer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alma Piermattei

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Andrea Piotti

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ulf Büntgen

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge