Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Linse is active.

Publication


Featured researches published by Katrin Linse.


Nature | 2007

First insights into the biodiversity and biogeography of the Southern Ocean deep sea

A. Brandt; Andrew J. Gooday; Simone N. Brandão; Saskia Brix; Wiebke Brökeland; Tomas Cedhagen; Madhumita Choudhury; Nils Cornelius; Bruno Danis; Ilse De Mesel; Robert J. Diaz; David Gillan; Brigitte Ebbe; John A. Howe; Dorte Janussen; Stefanie Kaiser; Katrin Linse; Marina V. Malyutina; Jan Pawlowski; Michael J. Raupach; Ann Vanreusel

Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748–6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.


PLOS Biology | 2012

The Discovery of New Deep-Sea Hydrothermal Vent Communities in the Southern Ocean and Implications for Biogeography

Alex D. Rogers; Paul A. Tyler; Douglas P. Connelly; Jonathan T. Copley; Rachael H. James; Robert D Larter; Katrin Linse; Rachel A. Mills; Alberto C. Naveira Garabato; Richard D. Pancost; David A. Pearce; Nicholas Polunin; Christopher R. German; Timothy M. Shank; Philipp H. Boersch-Supan; Belinda J. Alker; Alfred Aquilina; Sarah A. Bennett; Andrew Clarke; Robert J. J. Dinley; Alastair G C Graham; Darryl R. H. Green; Jeffrey A. Hawkes; Laura Hepburn; Ana Hilário; Veerle A.I. Huvenne; Leigh Marsh; Eva Ramírez-Llodra; William D. K. Reid; C. N. Roterman

A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.


Philosophical Transactions of the Royal Society B | 2007

The biodiversity of the deep Southern Ocean benthos

A. Brandt; C. De Broyer; I.G. De Mesel; Kari E. Ellingsen; Andrew J. Gooday; B. Hilbig; Katrin Linse; Michael Thomson; Paul A. Tyler

Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.


Polar Biology | 2007

Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae)

Katrin Linse; Thérèse Cope; Anne-Nina Lörz; Chester J. Sands

The bivalve Lissarca notorcadensis is one of the most abundant species in Antarctic waters and has colonised the entire Antarctic shelf and Scotia Sea Islands. Its brooding reproduction, low dispersal capabilities and epizoic lifestyle predict limited gene flow between geographically isolated populations. Relationships between specimens from seven regions in the Southern Ocean and outgroups were assessed with nuclear 28S rDNA and mitochondrial cytochrome oxidase subunit I (COI) genes. The 28S dataset indicate that while Lissarca appears to be a monophyletic genus, there is polyphyly between the Limopsidae and Philobryidae. Thirteen CO1 haplotypes were found, mostly unique to the sample regions, and two distinct lineages were distinguished. Specimens from the Weddell and Ross Sea form one lineage while individuals from the banks and islands of the Scotia Sea form the other. Within each lineage, further vicariance was observed forming six regionally isolated groups. Our results provide initial evidence for reproductively isolated populations of L. notorcadensis. The islands of the Scotia Sea appear to act as centres of speciation in the Southern Ocean.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Commonness and rarity in the marine biosphere

Sean R. Connolly; M. Aaron MacNeil; M. Julian Caley; Nancy Knowlton; Edward Cripps; Mizue Hisano; Loïc M. Thibaut; Bhaskar Deb Bhattacharya; Lisandro Benedetti-Cecchi; Russell E. Brainard; A. Brandt; Fabio Bulleri; Kari E. Ellingsen; Stefanie Kaiser; Ingrid Kröncke; Katrin Linse; Elena Maggi; Timothy D. O’Hara; Laetitia Plaisance; Gary C. B. Poore; Santosh Kumar Sarkar; K. K. Satpathy; Ulrike Schückel; Alan Williams; Robin S. Wilson

Significance Tests of biodiversity theory have been controversial partly because alternative formulations of the same theory seemingly yield different conclusions. This has been a particular challenge for neutral theory, which has dominated tests of biodiversity theory over the last decade. Neutral theory attributes differences in species abundances to chance variation in individuals’ fates, rather than differences in species traits. By identifying common features of different neutral models, we conduct a uniquely robust test of neutral theory across a global dataset of marine assemblages. Consistently, abundances vary more among species than neutral theory predicts, challenging the hypothesis that community dynamics are approximately neutral, and implicating species differences as a key driver of community structure in nature. Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of “neutral” biodiversity models—which assume ecological equivalence of species—to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities’ most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Cladistics | 2008

Phylum Tardigrada: an “individual” approach

Chester J. Sands; Sandra J. McInnes; Nigel J. Marley; William P. Goodall-Copestake; Peter Convey; Katrin Linse

Phylum Tardigrada consists of ∼1000 tiny, hardy metazoan species distributed throughout terrestrial, limno‐terrestrial and oceanic habitats. Their phylogenetic status has been debated, with current evidence placing them in the Ecdysozoa. Although there have been efforts to explore tardigrade phylogeny using both morphological and molecular data, limitations such as their few morphological characters and low genomic DNA concentrations have resulted in restricted taxonomic coverage. Using a protocol that allows us to identify and extract DNA from individuals, we have sequenced 18S rDNA from 343 tardigrades from across the globe. Using maximum parsimony and Bayesian analyses we have found support for dividing Order Parachela into three super‐families and further evidence that indicates the traditional taxonomic perspective of families in the class Eutardigrada are nonmonophyletic and require re‐working. It appears that conserved morphology within Tardigrada has resulted in conservative taxonomy as we have found cases of several discrete lineages grouped into single genera. Although this work substantially adds to the understanding of the evolution and taxonomy of the phylum, we highlight that inferences gained from this work are likely to be refined with the inclusion of further taxa—specifically representatives of the nine families yet to be sampled.


PLOS ONE | 2012

Diversity and Distribution Patterns in High Southern Latitude Sponges

Rachel Downey; Huw J. Griffiths; Katrin Linse; Dorte Janussen

Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.


PLOS ONE | 2010

Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

Brian P. V. Hunt; Jan M. Strugnell; Nina Bednaršek; Katrin Linse; R. John Nelson; E. A. Pakhomov; Brad A. Seibel; Dirk Steinke; Laura Würzberg

The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five “forma”. However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (±0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.


PLOS ONE | 2012

Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean

Leigh Marsh; Jonathan T. Copley; Veerle A.I. Huvenne; Katrin Linse; William D. K. Reid; Alex D. Rogers; Christopher J. Sweeting; Paul A. Tyler

Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies, these results provide a baseline for determining temporal change and investigations of processes structuring faunal assemblages at Southern Ocean vents.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura).

C. N. Roterman; J. Copley; Katrin Linse; Paul A. Tyler; Alex D. Rogers

The phylogeny of the superfamily Chirostyloidea (Decapoda: Anomura) has been poorly understood owing to limited taxon sampling and discordance between different genes. We present a nine-gene dataset across 15 chirostyloids, including all known yeti crabs (Kiwaidae), to improve the resolution of phylogenetic affinities within and between the different families, and to date key divergences using fossil calibrations. This study supports the monophyly of Chirostyloidea and, within this, a basal split between Eumunididae and a Kiwaidae–Chirostylidae clade. All three families originated in the Mid-Cretaceous, but extant kiwaids and most chirostylids radiated from the Eocene onwards. Within Kiwaidae, the basal split between the seep-endemic Kiwa puravida and a vent clade comprising Kiwa hirsuta and Kiwa spp. found on the East Scotia and Southwest Indian ridges is compatible with a hypothesized seep-to-vent evolutionary trajectory. A divergence date estimate of 13.4–25.9 Ma between the Pacific and non-Pacific lineages is consistent with Kiwaidae spreading into the Atlantic sector of the Southern Ocean via the newly opened Drake Passage. The recent radiation of Kiwaidae adds to the list of chemosynthetic fauna that appear to have diversified after the Palaeocene/Eocene Thermal Maximum, a period of possibly widespread anoxia/dysoxia in deep-sea basins.

Collaboration


Dive into the Katrin Linse's collaboration.

Top Co-Authors

Avatar

Dorte Janussen

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Julian Gutt

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Enrique Isla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Iain Barratt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Rose

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Craig R. Smith

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Elaina Jorgensen

National Marine Fisheries Service

View shared research outputs
Top Co-Authors

Avatar

Jan Seiler

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge