Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Männik is active.

Publication


Featured researches published by Katrin Männik.


Nature | 2010

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2

Robin G. Walters; Sébastien Jacquemont; Armand Valsesia; A.J. de Smith; Danielle Martinet; Johanna C. Andersson; Mario Falchi; Fangfang Chen; Joris Andrieux; Stéphane Lobbens; Bruno Delobel; Fanny Stutzmann; J. S. El-Sayed Moustafa; Jean-Claude Chèvre; Cécile Lecoeur; Vincent Vatin; Sonia Bouquillon; Jessica L. Buxton; Odile Boute; M. Holder-Espinasse; Jean-Marie Cuisset; M.-P. Lemaitre; A.-E. Ambresin; A. Brioschi; M. Gaillard; V. Giusti; Florence Fellmann; Alessandra Ferrarini; Nouchine Hadjikhani; Dominique Campion

Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’ in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.


European Journal of Medical Genetics | 2009

Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome.

Nathalie Van der Aa; Liesbeth Rooms; Geert Vandeweyer; Jenneke van den Ende; Edwin Reyniers; Marco Fichera; Corrado Romano; Barbara Delle Chiaie; Geert Mortier; Björn Menten; A Destree; Isabelle Maystadt; Katrin Männik; Ants Kurg; Tiia Reimand; Dom McMullan; Christine Oley; Louise Brueton; Ernie M.H.F. Bongers; Bregje W.M. van Bon; Rolph Pfund; Sébastien Jacquemont; Alessandra Ferrarini; Danielle Martinet; Connie Schrander-Stumpel; Alexander P.A. Stegmann; Suzanna G M Frints; Bert B.A. de Vries; Berten Ceulemans; R. Frank Kooy

Interstitial deletions of 7q11.23 cause Williams-Beuren syndrome, one of the best characterized microdeletion syndromes. The clinical phenotype associated with the reciprocal duplication however is not well defined, though speech delay is often mentioned. We present 14 new 7q11.23 patients with the reciprocal duplication of the Williams-Beuren syndrome critical region, nine familial and five de novo. These were identified by either array-based MLPA or by array-CGH/oligonucleotide analysis in a series of patients with idiopathic mental retardation with an estimated population frequency of 1:13,000-1:20,000. Variable speech delay is a constant finding in our patient group, confirming previous reports. Cognitive abilities range from normal to moderate mental retardation. The association with autism is present in five patients and in one father who also carries the duplication. There is an increased incidence of hypotonia and congenital anomalies: heart defects (PDA), diaphragmatic hernia, cryptorchidism and non-specific brain abnormalities on MRI. Specific dysmorphic features were noted in our patients, including a short philtrum, thin lips and straight eyebrows. Our patient collection demonstrates that the 7q11.23 microduplication not only causes language delay, but is also associated with congenital anomalies and a recognizable face.


Molecular Psychiatry | 2015

The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity

Anne M. Maillard; Anne Ruef; F. Pizzagalli; Eugenia Migliavacca; Loyse Hippolyte; Stanislaw Adaszewski; Juergen Dukart; Carina Ferrari; Philippe Conus; Katrin Männik; Marianna Zazhytska; Vanessa Siffredi; Philippe Maeder; Zoltán Kutalik; Ferath Kherif; Nouchine Hadjikhani; Jacques S. Beckmann; Alexandre Reymond; Bogdan Draganski; Sébastien Jacquemont

Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy.


JAMA Psychiatry | 2016

Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities

Debra D'Angelo; Sébastien Lebon; Qixuan Chen; Sandra Martin-Brevet; LeeAnne Green Snyder; Loyse Hippolyte; Ellen Hanson; Anne M. Maillard; W. Andrew Faucett; Aurélien Macé; Aurélie Pain; Raphael Bernier; Samuel Chawner; Albert David; Joris Andrieux; Elizabeth H. Aylward; Genevieve Baujat; Ines Caldeira; Philippe Conus; Carrina Ferrari; Francesca Forzano; Marion Gerard; Robin P. Goin-Kochel; Ellen Grant; Jill V. Hunter; Bertrand Isidor; Aurélia Jacquette; Aia Elise Jønch; Boris Keren; Didier Lacombe

IMPORTANCE The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI). OBJECTIVES To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD. DESIGN, SETTING, AND PARTICIPANTS This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives. MAIN OUTCOMES AND MEASURES Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data. RESULTS Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (-22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies. CONCLUSIONS AND RELEVANCE The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.


Human Molecular Genetics | 2014

16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

Eva M. Reinthaler; Dennis Lal; Sébastien Lebon; Michael S. Hildebrand; Hans Henrik M Dahl; Brigid M. Regan; Martha Feucht; Hannelore Steinböck; Birgit Neophytou; Gabriel M. Ronen; Laurian Roche; Ursula Gruber-Sedlmayr; Julia Geldner; Edda Haberlandt; Per Hoffmann; Stefan Herms; Christian Gieger; Melanie Waldenberger; Andre Franke; Michael Wittig; Susanne Schoch; Albert J. Becker; Andreas Hahn; Katrin Männik; Mohammad R. Toliat; Georg Winterer; Holger Lerche; Peter Nürnberg; Mefford Hc; Ingrid E. Scheffer

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fishers exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fishers exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.


PLOS ONE | 2013

Rare genomic structural variants in complex disease: lessons from the replication of associations with obesity.

Robin G. Walters; Lachlan Coin; Aimo Ruokonen; Adam J. de Smith; Julia S. El-Sayed Moustafa; Sébastien Jacquemont; Paul Elliott; Tonu Esko; Anna-Liisa Hartikainen; Jaana Laitinen; Katrin Männik; Danielle Martinet; David Meyre; Matthias Nauck; Robert Sladek; Gudmar Thorleifsson; Unnur Thorsteinsdottir; Armand Valsesia; Gérard Waeber; Flore Zufferey; Beverley Balkau; François Pattou; Andres Metspalu; Henry Völzke; Peter Vollenweider; Kari Stefansson; Marjo-Riitta Järvelin; Jacques S. Beckmann; Philippe Froguel; Alexandra I. F. Blakemore

The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the ‘missing heritability’. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10−4 (95% confidence interval [9.6×10−5–3.1×10−4]); accounts overall for 0.5% [0.19%–0.82%] of severe childhood obesity cases (P = 3.8×10−10; odds ratio = 25.0 [9.9–60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m−2 [1.8–10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.


European Journal of Medical Genetics | 2009

5.9 Mb microdeletion in chromosome band 17q22–q23.2 associated with tracheo-esophageal fistula and conductive hearing loss

Helen Puusepp; Olga Zilina; Rita Teek; Katrin Männik; Sven Parkel; Katrin Kruustük; Kati Kuuse; Ants Kurg; Katrin Õunap

Only eight cases involving deletions of chromosome 17 in the region q22-q24 have been reported previously. We describe an additional case, a 7-year-old boy with profound mental retardation, severe microcephaly, facial dysmorphism, symphalangism, contractures of large joints, hyperopia, strabismus, bilateral conductive hearing loss, genital abnormality, psoriasis vulgaris and tracheo-esophageal fistula. Analysis with whole-genome SNP genotyping assay detected a 5.9 Mb deletion in chromosome band 17q22-q23.2 with breakpoints between 48,200,000-48,300,000 bp and 54,200,000-54,300,000 bp (according to NCBI 36). The aberration was confirmed by real-time quantitative PCR analysis. Haploinsufficiency of NOG gene has been implicated in the development of conductive hearing loss, skeletal anomalies including symphalangism, contractures of joints, and hyperopia in our patient and may also contribute to the development of tracheo-esophageal fistula and/or esophageal atresia.


Human Mutation | 2014

Increased dosage of RAB39B affects neuronal development and could explain the cognitive impairment in male patients with distal Xq28 copy number gains.

Lieselot Vanmarsenille; Maila Giannandrea; Nathalie Fieremans; Jelle Verbeeck; Stefanie Belet; Martine Raynaud; Annick Vogels; Katrin Männik; Katrin Õunap; Vigneron Jacqueline; Sylvain Briault; Hilde Van Esch; Patrizia D'Adamo; Guy Froyen

Copy number gains at Xq28 are a frequent cause of X‐linked intellectual disability (XLID). Here, we report on a recurrent 0.5 Mb tandem copy number gain at distal Xq28 not including MECP2, in four male patients with nonsyndromic mild ID and behavioral problems. The genomic region is duplicated in two families and triplicated in a third reflected by more distinctive clinical features. The X‐inactivation patterns in carrier females correspond well with their clinical symptoms. Our mapping data confirm that this recurrent gain is likely mediated by nonallelic homologous recombination between two directly oriented Int22h repeats. The affected region harbors eight genes of which RAB39B encoding a small GTPase, was the prime candidate since loss‐of‐function mutations had been linked to ID. RAB39B is expressed at stable levels in lymphocytes from control individuals, suggesting a tight regulation. mRNA levels in our patients were almost two‐fold increased. Overexpression of Rab39b in mouse primary hippocampal neurons demonstrated a significant decrease in neuronal branching as well as in the number of synapses when compared with the control neurons. Taken together, we provide evidence that the increased dosage of RAB39B causes a disturbed neuronal development leading to cognitive impairment in patients with this recurrent copy number gain.


Biological Psychiatry | 2016

The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition

Loyse Hippolyte; Anne M. Maillard; Borja Rodríguez-Herreros; Aurélie Pain; Sandra Martin-Brevet; Carina Ferrari; Philippe Conus; Aurélien Macé; Nouchine Hadjikhani; Andres Metspalu; Anu Reigo; Anneli Kolk; Katrin Männik; Mandy Barker; Bertrand Isidor; Cédric Le Caignec; Cyril Mignot; Laurence Schneider; Laurent Mottron; Boris Keren; Albert David; Martine Doco-Fenzy; Marion Gerard; Raphael Bernier; Robin P. Goin-Kochel; Ellen Hanson; Lee Anne Green Snyder; Franck Ramus; Jacques S. Beckmann; Bogdan Draganski

BACKGROUND Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.


American Journal of Medical Genetics Part A | 2013

A patient with de novo 0.45 Mb deletion of 2p16.1: the role of BCL11A, PAPOLG, REL, and FLJ16341 in the 2p15-p16.1 microdeletion syndrome.

Miroslava Hancarova; Martina Simandlova; Jana Drabova; Katrin Männik; Ants Kurg; Zdenek Sedlacek

The 2p15‐p16.1 microdeletion syndrome is a novel, rare disorder characterized by developmental delay, intellectual disability, microcephaly, growth retardation, facial abnormalities, and other medical problems. We report here on an 11‐year‐old female showing clinical features consistent with the syndrome and carrying a de novo 0.45 Mb long deletion of the paternally derived 2p16.1 allele. The deleted region contains only three protein‐coding RefSeq genes, BCL11A, PAPOLG, and REL, and one long non‐coding RNA gene FLJ16341. Based on close phenotypic similarities with six reported patients showing typical clinical features of the syndrome, we propose that the critical region can be narrowed down further, and that these brain expressed genes can be considered candidates for the features seen in this microdeletion syndrome.

Collaboration


Dive into the Katrin Männik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludmila Kousoulidou

The Cyprus Institute of Neurology and Genetics

View shared research outputs
Top Co-Authors

Avatar

Jacques S. Beckmann

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge