Katrin Ochsenreither
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katrin Ochsenreither.
Frontiers in Microbiology | 2016
Katrin Ochsenreither; Claudia Glück; Timo Stressler; Lutz Fischer; Christoph Syldatk
Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications.
Frontiers in Microbiology | 2016
Florian Oswald; Stefan Dörsam; Nicolas Veith; Michaela Zwick; Anke Neumann; Katrin Ochsenreither; Christoph Syldatk
Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion of CO and H2 into malic acid was calculated to be 3.5 g malic acid per mol of consumed syngas or 0.22 g malic acid per gram of syngas.
Frontiers in Microbiology | 2016
Stefan Dörsam; Jennifer Kirchhoff; Michael Bigalke; Nicolaus Dahmen; Christoph Syldatk; Katrin Ochsenreither
Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.
Frontiers in chemistry | 2018
Sascha Siebenhaller; Julian Gentes; Alba Infantes; Claudia Muhle-Goll; Frank Kirschhöfer; Gerald Brenner-Weiß; Katrin Ochsenreither; Christoph Syldatk
Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC) and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness.
Sustainable Production of Bulk Chemicals : Integration of Bio-, Chemo-Resources and Processes. Ed.: M. Xian | 2016
Anke Neumann; Stefan Dörsam; Florian Oswald; Katrin Ochsenreither
Despite the inevitable depletion of fossil resources and the looming threat of climate change, crude oil and natural gas are still the number one sources for energy supply and raw material for chemical industry. Till date, 95 % of primary building blocks in chemical industry originate from fossil resources. To address the resulting challenges and the shortcomings, a biobased economy has to be established, and sustainable and eco-friendly alternatives have to be found immediately. The production of fine chemicals and building blocks by microbial fermentation from lignocellulosic biomass can be such an alternative; however, to become a suitable source for fermentation processes, biomass has to be pretreated. In this chapter the conversion of biomass to pyrolysis oil by fast pyrolysis and the further gasification to syngas by the bioliq® process is introduced as a possible cost-saving and energy neutral pretreatment. Furthermore, the suitability of biomass-derived pyrolysis oil and syngas as sources for the microbial production of value-added chemicals are discussed, and potential and existing processes and products are introduced.
Frontiers in chemistry | 2018
Sascha Siebenhaller; Jennifer Kirchhoff; Frank Kirschhöfer; Gerald Brenner-Weiß; Claudia Muhle-Goll; Burkhard Luy; Fabian Haitz; Thomas Hahn; Susanne Zibek; Christoph Syldatk; Katrin Ochsenreither
Lignocellulose can be converted sustainably to fuels, power and value-added chemicals like fatty acid esters. This study presents a concept for the first eco-friendly enzymatic synthesis of economically important fatty acid sugar esters based on lignocellulosic biomass. To achieve this, beech wood cellulose fiber hydrolysate was applied in three manners: as sugar component, as part of the deep eutectic solvent (DES) reaction system and as carbon source for the microbial production of the fatty acid component. These fatty acids were gained from single cell oil produced by the oleaginous yeast Cryptococcus curvatus cultivated with cellulose fiber hydrolysate as carbon source. Afterwards, an immobilized Candida antarctica lipase B was used as the biocatalyst in DES to esterify sugars with fatty acids. Properties of the DES were determined and synthesized sugar mono- and di-esters were identified and characterized using TLC, MS, and NMR. Using this approach, sugar esters were successfully synthesized which are 100% based on lignocellulosic biomass.
Computational and structural biotechnology journal | 2018
Oliver Buß; Jens Rudat; Katrin Ochsenreither
Improving protein stability is an important goal for basic research as well as for clinical and industrial applications but no commonly accepted and widely used strategy for efficient engineering is known. Beside random approaches like error prone PCR or physical techniques to stabilize proteins, e.g. by immobilization, in silico approaches are gaining more attention to apply target-oriented mutagenesis. In this review different algorithms for the prediction of beneficial mutation sites to enhance protein stability are summarized and the advantages and disadvantages of FoldX are highlighted. The question whether the prediction of mutation sites by the algorithm FoldX is more accurate than random based approaches is addressed.
AMB Express | 2014
I. Schulze; Silla Hansen; Steffen Großhans; Thomas Rudszuck; Katrin Ochsenreither; Christoph Syldatk; Anke Neumann
Applied Microbiology and Biotechnology | 2014
Katrin Ochsenreither; Christian Fischer; Anke Neumann; Christoph Syldatk
European Polymer Journal | 2015
Ansgar Sehlinger; Katrin Ochsenreither; Nikolai Bartnick; Michael A. R. Meier