Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Schulze is active.

Publication


Featured researches published by Katrin Schulze.


Biophysical Journal | 2010

Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density

Grégory Giannone; Eric Hosy; Florian Levet; Audrey Constals; Katrin Schulze; Alexander I. Sobolevsky; Michael P. Rosconi; Eric Gouaux; Robert Tampé; Daniel Choquet; Laurent Cognet

Versatile superresolution imaging methods, able to give dynamic information of endogenous molecules at high density, are still lacking in biological science. Here, superresolved images and diffusion maps of membrane proteins are obtained on living cells. The method consists of recording thousands of single-molecule trajectories that appear sequentially on a cell surface upon continuously labeling molecules of interest. It allows studying any molecules that can be labeled with fluorescent ligands including endogenous membrane proteins on living cells. This approach, named universal PAINT (uPAINT), generalizes the previously developed point-accumulation-for-imaging-in-nanoscale-topography (PAINT) method for dynamic imaging of arbitrary membrane biomolecules. We show here that the unprecedented large statistics obtained by uPAINT on single cells reveal local diffusion properties of specific proteins, either in distinct membrane compartments of adherent cells or in neuronal synapses.


Human Brain Mapping | 2009

Functional architecture of verbal and tonal working memory: An FMRI study

Stefan Koelsch; Katrin Schulze; Daniela Sammler; Thomas Fritz; Karsten Müller; Oliver Gruber

This study investigates the functional architecture of working memory (WM) for verbal and tonal information during rehearsal and articulatory suppression. Participants were presented with strings of four sung syllables with the task to remember either the pitches (tonal information) or the syllables (verbal information). Rehearsal of verbal, as well as of tonal information activated a network comprising ventrolateral premotor cortex (encroaching Brocas area), dorsal premotor cortex, the planum temporale, inferior parietal lobe, the anterior insula, subcortical structures (basal ganglia and thalamus), as well as the cerebellum. The topography of activations was virtually identical for the rehearsal of syllables and pitches, showing a remarkable overlap of the WM components for the rehearsal of verbal and tonal information. When the WM task was performed under articulatory suppression, activations in those areas decreased, while additional activations arose in anterior prefrontal areas. These prefrontal areas might contain additional storage components of verbal and tonal WM that are activated when auditory information cannot be rehearsed. As in the rehearsal conditions, the topography of activations under articulatory suppression was nearly identical for the verbal as compared to the tonal task. Results indicate that both the rehearsal of verbal and tonal information, as well as storage of verbal and tonal information relies on strongly overlapping neuronal networks. These networks appear to partly consist of sensorimotor‐related circuits which provide resources for the representation and maintenance of information, and which are remarkably similar for the production of speech and song. Hum Brain Mapp, 2009.


Proceedings of the National Academy of Sciences of the United States of America | 2010

In situ assembly of macromolecular complexes triggered by light

Christian Grunwald; Katrin Schulze; Annett Reichel; Victor U. Weiss; Dieter Blaas; Jacob Piehler; Karl-Heinz Wiesmüller; Robert Tampé

Chemical biology aims for a perfect control of protein complexes in time and space by their site-specific labeling, manipulation, and structured organization. Here we developed a self-inactivated, lock-and-key recognition element whose binding to His-tagged proteins can be triggered by light from zero to nanomolar affinity. Activation is achieved by photocleavage of a tethered intramolecular ligand arming a multivalent chelator head for high-affinity protein interaction. We demonstrate site-specific, stable, and reversible binding in solution as well as at interfaces controlled by light with high temporal and spatial resolution. Multiplexed organization of protein complexes is realized by an iterative in situ writing and binding process via laser scanning microscopy. This light-triggered molecular recognition should allow for a spatiotemporal control of protein-protein interactions and cellular processes by light-triggered protein clustering.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Test of a motor theory of long-term auditory memory

Katrin Schulze; Faraneh Vargha-Khadem; Mortimer Mishkin

Monkeys can easily form lasting central representations of visual and tactile stimuli, yet they seem unable to do the same with sounds. Humans, by contrast, are highly proficient in auditory long-term memory (LTM). These mnemonic differences within and between species raise the question of whether the human ability is supported in some way by speech and language, e.g., through subvocal reproduction of speech sounds and by covert verbal labeling of environmental stimuli. If so, the explanation could be that storing rapidly fluctuating acoustic signals requires assistance from the motor system, which is uniquely organized to chain-link rapid sequences. To test this hypothesis, we compared the ability of normal participants to recognize lists of stimuli that can be easily reproduced, labeled, or both (pseudowords, nonverbal sounds, and words, respectively) versus their ability to recognize a list of stimuli that can be reproduced or labeled only with great difficulty (reversed words, i.e., words played backward). Recognition scores after 5-min delays filled with articulatory-suppression tasks were relatively high (75–80% correct) for all sound types except reversed words; the latter yielded scores that were not far above chance (58% correct), even though these stimuli were discriminated nearly perfectly when presented as reversed-word pairs at short intrapair intervals. The combined results provide preliminary support for the hypothesis that participation of the oromotor system may be essential for laying down the memory of speech sounds and, indeed, that speech and auditory memory may be so critically dependent on each other that they had to coevolve.


Chemistry: A European Journal | 2008

Anchoring of histidine-tagged proteins to molecular printboards: self-assembly, thermodynamic modeling, and patterning.

Manon J.W. Ludden; Alart Mulder; Katrin Schulze; Vinod Subramaniam; Robert Tampé; Jurriaan Huskens

In this paper the multivalent binding of hexahistidine (His6)-tagged proteins to beta-cyclodextrin (beta-CD) self-assembled monolayers (SAMs) by using the nickel(II) complex of a hetero-divalent orthogonal adamantyl nitrilotriacetate linker (4) is described. Nonspecific interactions were suppressed by using monovalent adamantyl-hexa(ethylene glycol) derivative 3. With the mono-His6-tagged maltose binding protein (His6-MBP), thermodynamic modeling based on surface plasmon resonance (SPR) titration data showed that the MBP molecules in solution were linked, on average, to Ni.4 in 1:1 stoichiometry. On the surface, however, the majority of His(6)-MBP was complexed to surface-immobilized beta-CDs through three Ni.4 complexes. This difference is explained by the high effective beta-CD concentration at the surface and is a new example of supramolecular interfacial expression. In a similar adsorption scheme, SPR proved that the alpha-proteasome could be attached to beta-CD SAMs in a specific manner. Patterning through microcontact printing of (His6)4-DsRed-fluorescent timer (DsRed-FT), which is a tetrameric, visible autofluorescent protein, was carried out in the presence of Ni.4 Fluorescence measurements showed that the (His6)4-DsRed-FT is bound strongly through Ni.4 to the molecular printboard.


Journal of the American Chemical Society | 2011

Quantum-Yield-Optimized Fluorophores for Site-Specific Labeling and Super-Resolution Imaging

Christian Grunwald; Katrin Schulze; Grégory Giannone; Laurent Cognet; Brahim Lounis; Daniel Choquet; Robert Tampé

Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA-fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA-PPII-fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA-PPII-fluorophores in super-resolution microscopy.


Journal of Biological Chemistry | 2006

Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique

Chris van der Does; Chiara Presenti; Katrin Schulze; Stephanie Dinkelaker; Robert Tampé

We have recently proposed a “processive clamp” model for the ATP hydrolysis cycle of the nucleotide-binding domain (NBD) of the mitochondrial ABC transporter Mdl1 (Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C., and Tampé, R. (2003) J. Biol. Chem. 278, 26862-26869). In this model, ATP binding to two monomeric NBDs leads to formation of an NBD dimer that, after hydrolysis of both ATPs, dissociates and releases ADP. Here, we set out to follow the association and dissociation of NBDs using a novel minimally invasive site-specific labeling technique, which provides stable and stoichiometric attachment of fluorophores. The association and dissociation kinetics of the E599Q-NBD dimer upon addition and removal of ATP were determined by fluorescence self-quenching. Remarkably, the rate of ATP hydrolysis of the wild type NBD is determined by the rate of NBD dimerization. In the E599QNBD, however, in which the ATP hydrolysis is 250-fold reduced, the ATP hydrolysis reaction controls dimer dissociation and the overall ATPase cycle. These data explain contradicting observations on the rate-limiting step of various ABC proteins and further demonstrate that dimer formation is an important step in the ATP hydrolysis cycle.


Channels | 2008

Functional properties and modulation of extracellular epitope-tagged Ca V 2.1 voltage-gated calcium channels

Katrin Watschinger; Silja Horak; Katrin Schulze; Gerald J. Obermair; Alexandra Koschak; Martina J. Sinnegger-Brauns; Robert Tampé; Jörg Striessnig

Depolarisation-induced Ca2+ influx into electrically excitable cells is determined by the density of voltage-gated Ca2+ channels at the cell surface. Surface expression is modulated by physiological stimuli as well as by drugs and can be altered under pathological conditions. Extracellular epitope tagging of channel subunits allows to quantify their surface expression and to distinguish surface channels from those in intracellular compartments. Here we report the first systematic characterisation of extracellularly epitope tagged CaV2.1 channels. We identified a permissive region in the pore-loop of repeat IV within the CaV2.1 α1 subunit which allowed integration of several different tags (hemagluttinine [HA], double HA; 6-histidine tag [His], 9-His, bungarotoxin-binding site) without compromising α1 subunit protein expression (in transfected tsA-201 cells) and function (after expression in X. laevis oocytes). Immunofluorescent studies revealed that the double-HA tagged construct (1722-HAGHA) was targeted to presynaptic sites in transfected cultured hippocampal neurons as expected for CaV2.1 channels. We also demonstrate that introduction of tags into this permissive position creates artifical sites for channel modulation. This was demonstrated by partial inhibition of 1722-HA channel currents with anti-HA antibodies and the concentration-dependent stimulation or partial inhibition by Ni-nitrilo triacetic acid (NTA) and novel bulkier derivatives (Ni-trisNTA, Ni-tetrakisNTA, Ni-nitro-o-phenyl-bisNTA, Ni-nitro-p-phenyl-bisNTA). Therefore our data also provide evidence for the concept that artificial modulatory sites for small ligands can be introduced into voltage-gated Ca2+ channel for their selective modulation.


Journal of the American Chemical Society | 2009

Conformation of receptor adopted upon interaction with virus revealed by site-specific fluorescence quenchers and FRET analysis.

Jürgen Wruss; Philipp D. Pollheimer; Irene Meindl; Annett Reichel; Katrin Schulze; Wolfgang Schöfberger; Jacob Piehler; Robert Tampé; Dieter Blaas; Hermann J. Gruber

Human rhinovirus serotype 2 (HRV2) specifically binds to very-low-density lipoprotein receptor (VLDLR). Among the eight extracellular repeats of VLDLR, the third module (V3) has the highest affinity for the virus, and 12 copies of the genetically engineered concatamer V33333-His(6) were found to bind per virus particle. In the present study, ring formation of V33333-His(6) about each of the 12 5-fold symmetry axes on HRV2 was demonstrated by fluorescence resonance energy transfer (FRET) between donor and acceptor on N- and C-terminus, respectively. In particular, the N-terminus of V33333-His(6) was labeled with fluorescein, and the C-terminus with a new quencher which was bound to the His(6) tag with nanomolar affinity (K(d) approximately 10(-8) M) in the presence of 2 microM NiCl(2).


Chemistry: A European Journal | 2013

In‐Situ Spin Labeling of His‐Tagged Proteins: Distance Measurements under In‐Cell Conditions

Christoph Baldauf; Katrin Schulze; Petra Lueders; Enrica Bordignon; Robert Tampé

New spin labeling strategies have immense potential in studying protein structure and dynamics under physiological conditions with electron paramagnetic resonance (EPR) spectroscopy. Here, a new spin-labeled chemical recognition unit for switchable and concomitantly high affinity binding to His-tagged proteins was synthesized. In combination with an orthogonal site-directed spin label, this novel spin probe, Proxyl-trisNTA (P-trisNTA) allows the extraction of structural constraints within proteins and macromolecular complexes by EPR. By using the multisubunit maltose import system of E. coli: 1) the topology of the substrate-binding protein, 2) its substrate-dependent conformational change, and 3) the formation of the membrane multiprotein complex can be extracted. Notably, the same distance information was retrieved both in vitro and in situ allowing for site-specific spin labeling in cell lysates under in-cell conditions. This approach will open new avenues towards in-cell EPR.

Collaboration


Dive into the Katrin Schulze's collaboration.

Top Co-Authors

Avatar

Robert Tampé

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Christoph Baldauf

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Enrica Bordignon

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Alart Mulder

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Ali Tinazli

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Annett Reichel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Piehler

University of Osnabrück

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge