Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Zurfluh is active.

Publication


Featured researches published by Katrin Zurfluh.


Applied and Environmental Microbiology | 2013

Characteristics of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae Isolates from Rivers and Lakes in Switzerland

Katrin Zurfluh; Herbert Hächler; Magdalena Nüesch-Inderbinen; Roger Stephan

ABSTRACT One of the currently most relevant resistance mechanisms in Enterobacteriaceae is the production of enzymes that lead to modern expanded-spectrum cephalosporin and even carbapenem resistance, mainly extended-spectrum β-lactamases (ESBLs) and carbapenemases. A worrisome aspect is the spread of ESBL and carbapenemase producers into the environment. The aim of the present study was to assess the occurrence of ESBL- and carbapenemase-producing Enterobacteriaceae and to further characterize ESBL- and carbapenemase-producing Enterobacteriaceae in rivers and lakes in Switzerland. ESBL-producing Enterobacteriaceae were detected in 21 (36.2%) of the 58 bodies of water sampled. One river sample tested positive for a carbapenemase-producing Klebsiella pneumoniae subsp. pneumoniae strain. Seventy-four individual strains expressing an ESBL phenotype were isolated. Species identification revealed 60 Escherichia coli strains, seven Klebsiella pneumoniae subsp. pneumoniae strains, five Raoultella planticola strains, one Enterobacter cloacae strain, and one Enterobacter amnigenus strain. Three strains were identified as SHV-12 ESBL producers, and 71 strains carried genes encoding CTX-M ESBLs. Of the 71 strains with CTX-M ESBL genes, 8 isolates expressed CTX-M-1, three produced CTX-M-3, 46 produced CTX-M-15, three produced CTX-M-55, one produced CTX-M-79, six produced CTX-M-14, and four produced CTX-M-27. Three of the four CTX-M-27 producers belonged to the multiresistant pandemic sequence type E. coli B2:ST131 that is strongly associated with potentially severe infections in humans and animals.


Applied and Environmental Microbiology | 2015

Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae Isolated from Vegetables Imported from the Dominican Republic, India, Thailand, and Vietnam

Katrin Zurfluh; Magdalena Nüesch-Inderbinen; Marina Morach; Annina Zihler Berner; Herbert Hächler; Roger Stephan

ABSTRACT To examine to what extent fresh vegetables imported into Switzerland represent carriers of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae, 169 samples of different types of fresh vegetables imported into Switzerland from the Dominican Republic, India, Thailand, and Vietnam were analyzed. Overall, 25.4% of the vegetable samples yielded one or more ESBL-producing Enterobacteriaceae, 78.3% of which were multidrug resistant. Sixty isolates were obtained: Escherichia coli, 26; Klebsiella pneumoniae, 26; Enterobacter cloacae, 6; Enterobacter aerogenes, 1; and Cronobacter sakazakii, 1. We found 29 isolates producing CTX-M-15, 8 producing CTX-M-14, 7 producing CTX-M-55, 3 producing CTX-M-65, 1 each producing CTX-M-1, CTX-M-3, CTX-M-27, and CTX-M-63, 5 producing SHV-2, 3 producing SHV-12, and 1 producing SHV-2a. Four of the E. coli isolates belonged to epidemiologically important clones: CTX-M-15-producing B2:ST131 (1 isolate), D:ST405 (1 isolate), and D:ST38 (2 isolates). One of the D:ST38 isolates belonged to the extraintestinal enteroaggregative E. coli (EAEC) D:ST38 lineage. Two of the K. pneumoniae isolates belonged to the epidemic clones sequence type 15 (ST15) and ST147. The occurrence of antibiotic-resistant pathogenic and commensal Enterobacteriaceae in imported agricultural foodstuffs constitutes a source of ESBL genes and a concern for food safety.


Molecular Microbiology | 2013

Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC

Roger Marti; Katrin Zurfluh; Steven Hagens; Jasmin Pianezzi; Jochen Klumpp; Martin J. Loessner

We report isolation and characterization of the novel T4‐like Salmonella bacteriophage vB_SenM‐S16. S16 features a T‐even morphology and a highly modified 160 kbp dsDNA genome with 36.9 mol % G+C, containing 269 putative coding sequences and three tRNA genes. S16 is a virulent phage, and exhibits a maximally broad host range within the genus Salmonella, but does not infect other bacteria. Synthesis of functional S16 full‐length long tail fibre (LTF) in Escherichia coli was possible by coexpression of gp37 and gp38. Surface plasmon resonance analysis revealed nanomolar equilibrium affinity of the LTF to its receptor on Salmonella cells. We show that OmpC serves as primary binding ligand, and that S16 adsorption can be transferred to E. coli by substitution of ompC with the Salmonella homologue. S16 also infects ‘rough’ Salmonella strains which are defective in lipopolysaccharide synthesis and/or its carbohydrate substitution, indicating that this interaction does not require an intact LPS structure. Altogether, its virulent nature, broad host range and apparent lack of host DNA transduction render S16 highly suitable for biocontrol of Salmonella in foods and animal production. The S16 LTF represents a highly specific affinity reagent useful for cell decoration and labelling, as well as bacterial immobilization and separation.


Frontiers in Microbiology | 2014

Vertical transmission of highly similar blaCTX-M-1-harbouring IncI1 plasmids in Escherichia coli with different MLST types in the poultry production pyramid

Katrin Zurfluh; Juan Wang; Jochen Klumpp; Magdalena Nüesch-Inderbinen; Séamus Fanning; Roger Stephan

Objectives: The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Methods: Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The blaCTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Results: Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that blaCTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. Conclusions: The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks).


PLOS ONE | 2014

Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland.

Katrin Zurfluh; Helga Abgottspon; Herbert Hächler; Magdalena Nüesch-Inderbinen; Roger Stephan

Sixty extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from rivers and lakes in Switzerland were screened for individual strains additionally exhibiting a reduced quinolone susceptibility phenotype. Totally, 42 such isolates were found and further characterized for their molecular (fluoro)quinolone resistance mechanisms. PCR and sequence analysis were performed to identify chromosomal mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC and parE and to describe the occurrence of the following plasmid-mediated quinolone resistance genes: qepA, aac-6′-Ib-cr, qnrA, qnrB, qnrC, qnrD and qnrS. The contribution of efflux pumps to the resistance phenotype of selected strains was further determined by the broth microdilution method in the presence and absence of the efflux pump inhibitor phe-arg-β-naphthylamide (PAβN). Almost all strains, except two isolates, showed at least one mutation in the QRDR of gyrA. Ten strains showed only one mutation in gyrA, whereas thirty isolates exhibited up to four mutations in the QRDR of gyrA, parC and/or parE. No mutations were detected in gyrB. Most frequently the amino-acid substitution Ser83→Leu was detected in GyrA followed by Asp87→Asn in GyrA, Ser80→Ile in ParC, Glu84→Val in ParC and Ser458→Ala in ParE. Plasmid-mediated quinolone resistance mechanisms were found in twenty isolates bearing QnrS1 (4/20), AAC-6′-Ib-cr (15/20) and QepA (1/20) determinants, respectively. No qnrA, qnrB, qnrC and qnrD were found. In the presence of PAβN, the MICs of nalidixic acid were decreased 4- to 32-fold. (Fluoro) quinolone resistance is due to various mechanisms frequently associated with ESBL-production in E. coli from surface waters in Switzerland.


Antimicrobial Agents and Chemotherapy | 2016

Full-Length Nucleotide Sequences of mcr-1-Harboring Plasmids Isolated from Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolates of Different Origins.

Katrin Zurfluh; Jochen Klumpp; Magdalena Nüesch-Inderbinen; Roger Stephan

ABSTRACT Here, we present the full sequences of three mcr-1-carrying plasmids isolated from extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli. The plasmids belong to three different replicon types and are 34,640 bp, 209,401 bp, and 247,885 bp in size. We describe for the first time a composite transposon containing mcr-1 localized on a multidrug-resistant (MDR) IncHI2 plasmid harboring additional determinants of resistance to six different classes of antibiotics, including the ESBL gene blaCTX-M-1, and heavy metal resistance.


Environmental Microbiology | 2014

The tail-associated depolymerase of Erwinia amylovora phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage

Yannick Born; Lars Fieseler; Jochen Klumpp; Marcel R. Eugster; Katrin Zurfluh; Brion Duffy; Martin J. Loessner

The depolymerase enzyme (DpoL1) encoded by the T7-like phage L1 efficiently degrades amylovoran, an important virulence factor and major component of the extracellular polysaccharide (EPS) of its host, the plant pathogen Erwinia amylovora. Mass spectrometry analysis of hydrolysed EPS revealed that DpoL1 cleaves the galactose-containing backbone of amylovoran. The enzyme is most active at pH 6 and 50°C, and features a modular architecture. Removal of 180 N-terminal amino acids was shown not to affect enzyme activity. The C-terminus harbours the hydrolase activity, while the N-terminal domain links the enzyme to the phage particle. Electron microscopy demonstrated that DpoL1-specific antibodies cross-link phage particles at their tails, either lateral or frontal, and immunogold staining confirmed that DpoL1 is located at the tail spikes. Exposure of high-level EPS-producing Er. amylovora strain CFBP1430 to recombinant DpoL1 dramatically increased sensitivity to the Dpo-negative phage Y2, which was not the case for EPS-negative mutants or low-level EPS-producing Er. amylovora. Our findings indicate that enhanced phage susceptibility is based on enzymatic removal of the EPS capsule, normally a physical barrier to Y2 infection, and that use of DpoL1 together with the broad host range, virulent phage Y2 represents an attractive combination for biocontrol of fire blight.


Genome Announcements | 2016

Draft Genome Sequence of Escherichia coli S51, a Chicken Isolate Harboring a Chromosomally Encoded mcr-1 Gene.

Katrin Zurfluh; Taurai Tasara; Laurent Poirel; Patrice Nordmann; Roger Stephan

ABSTRACT We present the draft genome of Escherichia coli S51, a colistin-resistant extended-spectrum β-lactamase-producing strain isolated in 2015 from raw chicken meat imported from Germany. Assembly and annotation of this draft genome resulted in a 4,994,918-bp chromosome and revealed a chromosomally encoded mcr-1 gene responsible for the colistin resistance of the strain.


Frontiers in Microbiology | 2014

Replicon typing of plasmids carrying blaCTX-M-1 in Enterobacteriaceae of animal, environmental and human origin

Katrin Zurfluh; Gianna Jakobi; Roger Stephan; Herbert Hächler; Magdalena Nüesch-Inderbinen

Objectives: The aim of this work was to determine the plasmid replicon profiles of a collection of blaCTX-M-1-positive enterobacterial strains. The isolates originated from chicken in the production pyramid, healthy food-producing animals at slaughter (chicken, calves, and pigs), chicken retail meat, environmental isolates originating from water bodies, and isolates from humans. A selection of IncI and IncN plasmids were characterized by multilocus sequence typing in order to determine their epidemiological relatedness. Methods: Transconjugants of 74 blaCTX-M-1-positive isolates were analyzed by PCR-based replicon typing and by PCR-based plasmid multilocus sequence typing. Results: The incompatibility groups detected among the blaCTX-M-1-harboring plasmids included IncI1, IncN, IncHI1B, IncF, IncFIIS, IncFIB, and IncB/O, with plasmid lineage IncI1/ST3 predominating in isolates from chicken and from humans. Lineage IncN/ST1 was detected mainly in isolates from pigs. For the first time, blaCTX-M-1 genes encoded on IncHI1 plasmids were detected in isolates from cattle and from water bodies. Conclusions: This study identifies plasmid lineages that are contributing to the dissemination of blaCTX-M-1 genes in the food chain, the environment, and humans.


Antimicrobial Resistance and Infection Control | 2015

Emergence of Escherichia coli producing OXA-48 β-lactamase in the community in Switzerland

Katrin Zurfluh; Magdalena Nüesch-Inderbinen; Laurent Poirel; Patrice Nordmann; Herbert Hächler; Roger Stephan

BackgroundThe emergence and worldwide spread of carbapenemase-producing Enterobacteriaceae is of great concern to public health services. The aim of this study was to investigate the occurrence of carbapenemase-producing Enterobacteriaceae in the community in Switzerland.FindingsOne thousand and eighty-six stool samples of healthy humans (staff members of a food-processing company which were screened for the occurrence of salmonellae) were collected in September 2014. After an initial enrichment-step, carbapenemase-producing Enterobacteriaceae were isolated from the carbapenem-containing selective medium SUPERCARBA II. Grown colonies from 11 samples were screened by PCR for the presence of blaKPC, blaNDM, blaOXA-48 and blaVIM. A single OXA-48-producing Escherichia coli was detected. Phylogenetic grouping and multi-locus sequence typing (MLST) revealed that this strain belonged to D:ST38, a type which had been previously reported in the UK, France, Lebanon and Egypt.ConclusionsThe results of this study show that OXA-48-producing Enterobacteriaceae have started to spread into the community in Switzerland, and a continuous monitoring is necessary to better understand their dissemination in the human population as well as in animals and the environment.

Collaboration


Dive into the Katrin Zurfluh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Poirel

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Séamus Fanning

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge