Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrina Gee is active.

Publication


Featured researches published by Katrina Gee.


Inflammation and Allergy - Drug Targets | 2009

The IL-12 Family of Cytokines in Infection, Inflammation and Autoimmune Disorders

Katrina Gee; Christina Guzzo; Nor Fazila Che Mat; Wei Ma; Ashok Kumar

Cytokines are critical coordinators of the immune response necessary for resolving bacterial and viral assaults on the immune system. In particular, the IL-12 family of cytokines are key players in the regulation of T cell responses. These responses are orchestrated by monocytes, macrophages, and dendritic cells which produce the members of the IL-12 family of cytokines in response to infection. IL-27 and IL-23 are two cytokines that are related to IL-12; these cytokines share homology at the subunit, receptor, and signalling levels. IL-12 is composed of p35 and p40 subunits, which, when combined together form the bioactive IL-12p70. IL-23 is composed of the IL-12p40 subunit as well as the IL-23p19 subunit, which shares homology with IL-12p35. IL-27 is composed of EBI3 and p28. These three cytokines activate similar members of the JAK/STAT signalling pathways as a result of homology in their receptor components. Production of these cytokines by activated monocytes, macrophages, and dendritic cells results in the activation and differentiation of T cells. In spite of their similarity, each of these cytokines has specific roles in the regulation of immune responses. IL-12 is required for the induction of IFN-gamma production, critical for the induction of Th1 cells. IL-27 has been shown to play a role in the induction of Th1 cells from naive T cells, whereas IL-23 has been demonstrated to play a key role in the induction of the newly described Th17 cells. Recently, a novel heterodimeric and anti-inflammatory cytokine composed of the IL-12p35 and EBI3 subunits has been identified as IL-35. The biological properties of the IL-12 family of cytokines, the signalling pathways mediated by these cytokines and their role in infection, inflammation, and autoimmune diseases will be the focus of this review.


Glycoconjugate Journal | 2009

Dependence of pathogen molecule-induced Toll-like receptor activation and cell function on Neu1 sialidase

Schammim Ray Amith; Preethi Jayanth; Susan Franchuk; Sarah Siddiqui; Volkan Seyrantepe; Katrina Gee; Sameh Basta; Rudi Beyaert; Alexey V. Pshezhetsky; Myron R. Szewczuk

The signaling pathways of mammalian Toll-like receptors (TLR) are well characterized, but the initial molecular mechanisms activated following ligand interactions with the receptors remain poorly defined. Here, we show a membrane controlling mechanism that is initiated by ligand binding to TLR-2, -3 and-4 to induce Neu1 sialidase activity within minutes in live primary bone marrow (BM) macrophage cells and macrophage and dendritic cell lines. Central to this process is that Neu1 and not Neu2,-3 and-4 forms a complex with TLR-2,-3 and-4 on the cell surface of naïve macrophage cells. Neuraminidase inhibitors BCX1827, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), zanamivir and oseltamivir carboxylate have a limited significant inhibition of the LPS-induced sialidase activity in live BMC-2 macrophage cells but Tamiflu (oseltamivir phosphate) completely blocks this activity. Tamiflu inhibits LPS-induced sialidase activity in live BMC-2 cells with an IC50 of 1.2 μM compared to an IC50 of 1015 μM for its hydrolytic metabolite oseltamivir carboxylate. Tamiflu blockage of LPS-induced Neu1 sialidase activity is not affected in BMC-2 cells pretreated with anticarboxylesterase agent clopidogrel. Endotoxin LPS binding to TLR4 induces Neu1 with subsequent activation of NFκB and the production of nitric oxide and pro-inflammatory IL-6 and TNFα cytokines in primary and macrophage cell lines. Hypomorphic cathepsin A mice with a secondary Neu1 deficiency respond poorly to LPS-induced pro-inflammatory cytokines compared to the wild-type or hypomorphic cathepsin A with normal Neu1 mice. Our findings establish an unprecedented mechanism for pathogen molecule-induced TLR activation and cell function, which is critically dependent on Neu1 sialidase activity associated with TLR ligand treated live primary macrophage cells and macrophage and dendritic cell lines.


Journal of Biological Chemistry | 2003

Tumor Necrosis Factor-α Induces Functionally Active Hyaluronan-adhesive CD44 by Activating Sialidase through p38 Mitogen-activated Protein Kinase in Lipopolysaccharide-stimulated Human Monocytic Cells

Katrina Gee; Maya Kozlowski; Ashok Kumar

Interaction of CD44, an adhesion molecule, with its ligand, hyaluronan (HA), in monocytic cells plays a critical role in cell migration, inflammation, and immune responses. Most cell types express CD44 but do not bind HA. The biological functions of CD44 have been attributed to the generation of the functionally active, HA-adhesive form of this molecule. Although lipopolysaccharide (LPS) and cytokines induce HA-adhesive CD44, the molecular mechanism underlying this process remains unknown. In this study, we show that LPS-induced CD44-mediated HA (CD44-HA) binding in monocytes is regulated by endogenously produced tumor necrosis factor (TNF)-α and IL-10. Furthermore, p38 mitogen-activated protein kinase (MAPK) activation was required for LPS- and TNF-α-induced, but not IL-10-induced, CD44-HA-binding in normal monocytes. To dissect the signaling pathways regulating CD44-HA binding independently of cross-regulatory IL-10-mediated effects, IL-10-refractory promonocytic THP-1 cells were employed. LPS-induced CD44-HA binding in THP-1 cells was regulated by endogenously produced TNF-α. Our results also suggest that lysosomal sialidase activation may be required for the acquisition of the HA-binding form of CD44 in LPS- and TNF-α-stimulated monocytic cells. Studies conducted to understand the role of MAPKs in the induction of sialidase activity revealed that LPS-induced sialidase activity was dependent on p42/44 MAPK-mediated TNF-α production. Blocking TNF-α production by PD98059, a p42/44 inhibitor, significantly reduced the LPS-induced sialidase activity and CD44-HA binding. Subsequently, TNF-α-mediated p38 MAPK activation induced sialidase activity and CD44-HA binding. Taken together, our results suggest that TNF-α-induced p38 MAPK activation may regulate the induction of functionally active HA-binding form of CD44 by activating sialidase in LPS-stimulated human monocytic cells.


Journal of Immunology | 2012

IL-27 Enhances LPS-Induced Proinflammatory Cytokine Production via Upregulation of TLR4 Expression and Signaling in Human Monocytes

Christina Guzzo; Amit Ayer; Sameh Basta; Bruce W. Banfield; Katrina Gee

IL-27, which is produced by activated APCs, bridges innate and adaptive immunity by regulating the development of Th cells. Recent evidence supports a role for IL-27 in the activation of monocytic cells in terms of inflammatory responses. Indeed, proinflammatory and anti-inflammatory activities are attributed to IL-27, and IL-27 production itself is modulated by inflammatory agents such as LPS. IL-27 primes LPS responses in monocytes; however, the molecular mechanism behind this phenomenon is not understood. In this study, we demonstrate that IL-27 priming results in enhanced LPS-induced IL-6, TNF-α, MIP-1α, and MIP-1β expression in human primary monocytes. To elucidate the molecular mechanisms responsible for IL-27 priming, we measured levels of CD14 and TLR4 required for LPS binding. We determined that IL-27 upregulates TLR4 in a STAT3- and NF-κB–dependent manner. Immunofluorescence microscopy revealed enhanced membrane expression of TLR4 and more distinct colocalization of CD14 and TLR4 upon IL-27 priming. Furthermore, IL-27 priming enhanced LPS-induced activation of NF-κB family members. To our knowledge, this study is the first to show a role for IL-27 in regulating TLR4 expression and function. This work is significant as it reveals new mechanisms by which IL-27 can enhance proinflammatory responses that can occur during bacterial infections.


Cellular Signalling | 2010

Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for neurotrophin activation of Trk receptors and cellular signaling.

Preethi Jayanth; Schammim Ray Amith; Katrina Gee; Myron R. Szewczuk

Neurotrophin-induced Trk tyrosine kinase receptor activation and neuronal cell survival responses have been reported to be under the control of a membrane associated sialidase. Here, we identify an unprecedented membrane sialidase mechanism initiated by nerve growth factor (NGF) binding to TrkA to potentiate GPCR-signaling via membrane Galphai subunit proteins and matrix metalloproteinase-9 (MMP-9) activation to induce Neu1 sialidase activation in live primary neurons and TrkA- and TrkB-expressing cell lines. Central to this process is that Neu1/MMP-9 complex is bound to TrkA on the cell surface of naïve primary neurons and TrkA-expressing cells. Tamiflu completely blocks this sialidase activity in live TrkA-PC12 cells treated with NGF with an IC(50) of 3.876 microM with subsequent inhibition of Trk activation in primary neurons and neurite outgrowth in TrkA-PC12 cells. Our findings uncover a Neu1 and MMP-9 cross-talk on the cell surface that is critically essential for neurotrophin-induced Trk tyrosine kinase receptor activation and cellular signaling.


Journal of Biological Chemistry | 2006

Intracellular HIV-Tat Expression Induces IL-10 Synthesis by the CREB-1 Transcription Factor through Ser133 Phosphorylation and Its Regulation by the ERK1/2 MAPK in Human Monocytic Cells

Katrina Gee; Jonathan B. Angel; Wei Ma; Sasmita Mishra; Niranjala Gajanayaka; Karl Parato; Ashok Kumar

Human immunodeficiency virus (HIV)-Tat plays an important role in virus replication and in various aspects of host immune responses, including dysregulation of cytokine production. IL-10, an anti-inflammatory cytokine, is up-regulated during the course of HIV infection representing an important pathway by which HIV may induce immunodeficiency. Here we show that extracellular as well as intracellular Tat induced IL-10 expression in normal human monocytes and promonocytic THP-1 cells. The signaling pathways involved in the regulation of IL-10 production by endogenous Tat remain unknown. To understand the molecular mechanism underlying intracellular Tat-induced IL-10 transcription, we employed a retroviral expression system to investigate the role of MAPKs and the transcription factor(s) involved. Our results suggest that an inhibitor specific for the ERK1/2, PD98059, selectively blocked intracellular Tat-induced IL-10 expression in THP-1 cells. Furthermore, intracellular Tat activated the CREB-1 transcription factor through Ser133 phosphorylation that was regulated by ERK MAPK as determined by IL-10 promoter analysis and gel shift assays. Overall, our results suggest that intracellular HIV-Tat induces IL-10 transcription by ERK MAPK-dependent CREB-1 transcription factor activation through Ser133 phosphorylation.


Journal of Biological Chemistry | 2011

Neu1 sialidase and matrix metalloproteinase-9 cross-talk is essential for TOLL-like receptor activation and cellular signaling

Samar Abdulkhalek; Schammim Ray Amith; Susan Franchuk; Preethi Jayanth; Merry Guo; Trisha Finlay; Alanna Gilmour; Christina Guzzo; Katrina Gee; Rudi Beyaert; Myron R. Szewczuk

The signaling pathways of mammalian Toll-like receptors (TLRs) are well characterized, but the precise mechanism(s) by which TLRs are activated upon ligand binding remains poorly defined. Recently, we reported a novel membrane sialidase-controlling mechanism that depends on ligand binding to its TLR to induce mammalian neuraminidase-1 (Neu1) activity, to influence receptor desialylation, and subsequently to induce TLR receptor activation and the production of nitric oxide and proinflammatory cytokines in dendritic and macrophage cells. The α-2,3-sialyl residue of TLR was identified as the specific target for hydrolysis by Neu1. Here, we report a membrane signaling paradigm initiated by endotoxin lipopolysaccharide (LPS) binding to TLR4 to potentiate G protein-coupled receptor (GPCR) signaling via membrane Gαi subunit proteins and matrix metalloproteinase-9 (MMP9) activation to induce Neu1. Central to this process is that a Neu1-MMP9 complex is bound to TLR4 on the cell surface of naive macrophage cells. Specific inhibition of MMP9 and GPCR Gαi-signaling proteins blocks LPS-induced Neu1 activity and NFκB activation. Silencing MMP9 mRNA using lentivirus MMP9 shRNA transduction or siRNA transfection of macrophage cells and MMP9 knock-out primary macrophage cells significantly reduced Neu1 activity and NFκB activation associated with LPS-treated cells. These findings uncover a molecular organizational signaling platform of a novel Neu1 and MMP9 cross-talk in alliance with TLR4 on the cell surface that is essential for ligand activation of TLRs and subsequent cellular signaling.


Journal of Biological Chemistry | 2007

Cyclosporin A and FK506 inhibit IL-12p40 production through the calmodulin/calmodulin-dependent protein kinase-activated PI3K in LPS-stimulated human monocytic cells

Wei Ma; Sasmita Mishra; Katrina Gee; Jyoti Prasad Mishra; Devki Nandan; Neil E. Reiner; Jonathan B. Angel; Ashok Kumar

Cyclosporine-A (CyA) and FK506 are potent immunosuppressive agents because of their ability to suppress the production of Th1 cytokines including interleukin (IL)-12. However, the mechanisms underlying the inhibitory effects of CyA and FK506 on the production of IL-12p40, a critical component of IL-12, remain unknown. Both CyA and FK506 are potent inhibitors of calcineurin in the calcium signaling pathway. Interestingly, calcium and phosphoinositide 3-kinase (PI3K) signaling pathways have been shown to negatively regulate lipopolysaccharide (LPS)-induced murine IL-12p40 production. Contrary to these observations, we show that LPS-induced IL-12p40 production in human monocytic cells is positively regulated by the calcium pathway and in particular by calmodulin-(CaM) and CaM-dependent protein kinase-II (CaMK-II)-activated PI3K. Furthermore, LPS-induced IL-12p40 production was regulated by the p110α catalytic subunit of PI3K. Moreover, LPS induced IL-12p40 production through the CaM/CaMK-II-activated NFκB and AP-1 transcription factors. LPS-induced IL-12p40 production is known to be regulated by the c-Jun N-terminal kinase (JNK) pathway. Importantly, both CyA and FK506 down-regulated LPS-induced IL-12p40 transcription by inhibiting CaM/CaMK-II-activated PI3K and their downstream transcription factors NFκB and AP-1 independent of the JNK pathway.


AIDS | 2010

Impact of HIV infection, highly active antiretroviral therapy, and hepatitis C coinfection on serum interleukin-27.

Christina Guzzo; Wilma M. Hopman; Nor Fazila Che Mat; Wendy Wobeser; Katrina Gee

A newly described cytokine, interleukin-27 (IL-27), that activates naive CD4 T cells, has recently been shown to be an anti-HIV cytokine. However, the effect of HIV infection on IL-27 expression has not been characterized. We found that clinical characteristics, including HIV viral load, hepatitis C virus coinfection, and CD4 T cell counts, were associated with changes in serum IL-27. Overall, our results suggest circulating HIV may suppress IL-27, a critical concept in treatment development with this cytokine.


Scientific Reports | 2012

IL-27 increases BST-2 expression in human monocytes and T cells independently of type I IFN

Christina Guzzo; Masany Jung; Ashley Graveline; Bruce W. Banfield; Katrina Gee

IL-27 modulates inflammatory responses by influencing cytokine secretion and CD4 T cell differentiation. Recently, IL-27 was demonstrated to inhibit HIV replication by inducing type I interferon (IFN) expression and subsequent IFN-dependent expression of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-3 family members, a group of antiviral cytidine deaminases. To characterize other anti-viral genes modulated by IL-27, we examined another IFN-responsive gene: tetherin/bone marrow stromal cell antigen 2 (BST-2). Our study shows that IL-27 can directly induce BST-2 expression, independently of an intermediary type I IFN response. Quantitative RT-PCR analysis demonstrated IL-27-induced BST-2 mRNA expression as early as 2h after exposure of cells to IL-27. In the presence of the type I IFN-neutralizing protein, B18R, IL-27-induced BST-2 expression was maintained, demonstrating that IFN is not an intermediary in IL-27-induced BST-2. Taken together, our findings identify a novel function of IL-27 as a direct stimulator of BST-2 expression.

Collaboration


Dive into the Katrina Gee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Ma

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge