Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrina M. Dick is active.

Publication


Featured researches published by Katrina M. Dick.


Neurology | 2016

Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia

Jonathan D. Rohrer; Ione O.C. Woollacott; Katrina M. Dick; Elizabeth Gordon; Alexander Fellows; Jamie Toombs; Ronald Druyeh; M. Jorge Cardoso; Sebastien Ourselin; Jennifer M. Nicholas; Niklas Norgren; Simon Mead; Ulf Andreasson; Kaj Blennow; Jonathan M. Schott; Nick C. Fox; Jason D. Warren; Henrik Zetterberg

Objective: To investigate serum neurofilament light chain (NfL) concentrations in frontotemporal dementia (FTD) and to see whether they are associated with the severity of disease. Methods: Serum samples were collected from 74 participants (34 with behavioral variant FTD [bvFTD], 3 with FTD and motor neuron disease and 37 with primary progressive aphasia [PPA]) and 28 healthy controls. Twenty-four of the FTD participants carried a pathogenic mutation in C9orf72 (9), microtubule-associated protein tau (MAPT; 11), or progranulin (GRN; 4). Serum NfL concentrations were determined with the NF-Light kit transferred onto the single-molecule array platform and compared between FTD and healthy controls and between the FTD clinical and genetic subtypes. We also assessed the relationship between NfL concentrations and measures of cognition and brain volume. Results: Serum NfL concentrations were higher in patients with FTD overall (mean 77.9 pg/mL [SD 51.3 pg/mL]) than controls (19.6 pg/mL [SD 8.2 pg/mL]; p < 0.001). Concentrations were also significantly higher in bvFTD (57.8 pg/mL [SD 33.1 pg/mL]) and both the semantic and nonfluent variants of PPA (95.9 and 82.5 pg/mL [SD 33.0 and 33.8 pg/mL], respectively) compared with controls and in semantic variant PPA compared with logopenic variant PPA. Concentrations were significantly higher than controls in both the C9orf72 and MAPT subgroups (79.2 and 40.5 pg/mL [SD 48.2 and 20.9 pg/mL], respectively) with a trend to a higher level in the GRN subgroup (138.5 pg/mL [SD 103.3 pg/mL). However, there was variability within all groups. Serum concentrations correlated particularly with frontal lobe atrophy rate (r = 0.53, p = 0.003). Conclusions: Increased serum NfL concentrations are seen in FTD but show wide variability within each clinical and genetic group. Higher concentrations may reflect the intensity of the disease in FTD and are associated with more rapid atrophy of the frontal lobes.


Neurology | 2016

Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes

Ian Coyle-Gilchrist; Katrina M. Dick; Karalyn Patterson; Patricia Vázquez Rodríquez; Eileen Wehmann; Alicia Wilcox; Claire Lansdall; Kate Dawson; Julie Wiggins; Simon Mead; Carol Brayne; James B. Rowe

Objectives: To estimate the lifetime risk, prevalence, incidence, and mortality of the principal clinical syndromes associated with frontotemporal lobar degeneration (FTLD) using revised diagnostic criteria and including intermediate clinical phenotypes. Methods: Multisource referral over 2 years to identify all diagnosed or suspected cases of frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), or corticobasal syndrome (CBS) in 2 UK counties (population 1.69 million). Diagnostic confirmation used current consensus diagnostic criteria after interview and reexamination. Results were adjusted to the 2013 European standard population. Results: The prevalence of FTD, PSP, and CBS was 10.8/100,000. The incidence and mortality were very similar, at 1.61/100,000 and 1.56/100,000 person-years, respectively. The estimated lifetime risk is 1 in 742. Survival following diagnosis varied widely: from PSP 2.9 years to semantic variant FTD 9.1 years. Age-adjusted prevalence peaked between 65 and 69 years at 42.6/100,000: the age-adjusted prevalence for persons older than 65 years is double the prevalence for those between 40 and 64 years. Fifteen percent of those screened had a relevant genetic mutation. Conclusions: Key features of this study include the revised diagnostic criteria with improved specificity and sensitivity, an unrestricted age range, and simultaneous assessment of multiple FTLD syndromes. The prevalence of FTD, PSP, and CBS increases beyond 65 years, with frequent genetic causes. The time from onset to diagnosis and from diagnosis to death varies widely among syndromes, emphasizing the challenge and importance of accurate and timely diagnosis. A high index of suspicion for FTLD syndromes is required by clinicians, even for older patients.


Annals of clinical and translational neurology | 2016

Neurofilament light chain: a biomarker for genetic frontotemporal dementia

Lieke H.H. Meeter; Elise G.P. Dopper; Lize C. Jiskoot; Raquel Sánchez-Valle; Caroline Graff; Luisa Benussi; Roberta Ghidoni; Yolande A.L. Pijnenburg; Barbara Borroni; Daniela Galimberti; Robert Laforce; Mario Masellis; Rik Vandenberghe; Isabelle Le Ber; Markus Otto; Rick van Minkelen; Janne M. Papma; Serge A.R.B. Rombouts; Mircea Balasa; Linn Öijerstedt; Vesna Jelic; Katrina M. Dick; David M. Cash; S Harding; M. Jorge Cardoso; Sebastien Ourselin; Alessandro Padovani; Elio Scarpini; Chiara Fenoglio; Maria Carmela Tartaglia

To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters.


Neurobiology of Aging | 2018

Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study.

David M. Cash; Martina Bocchetta; David L. Thomas; Katrina M. Dick; John C. van Swieten; Barbara Borroni; Daniela Galimberti; Mario Masellis; Maria Carmela Tartaglia; James B. Rowe; Caroline Graff; Fabrizio Tagliavini; Giovanni B. Frisoni; Robert Laforce; Elizabeth Finger; Alexandre de Mendonça; Sandro Sorbi; Sebastien Ourselin; Jonathan D. Rohrer; Genfi Genetic Ftd Initiative

Frontotemporal dementia (FTD) is a highly heritable condition with multiple genetic causes. In this study, similarities and differences of gray matter (GM) atrophy patterns were assessed among 3 common forms of genetic FTD (mutations in C9orf72, GRN, and MAPT). Participants from the Genetic FTD Initiative (GENFI) cohort with a suitable volumetric T1 magnetic resonance imaging scan were included (319): 144 nonmutation carriers, 128 presymptomatic mutation carriers, and 47 clinically affected mutation carriers. Cross-sectional differences in GM volume between noncarriers and carriers were analyzed using voxel-based morphometry. In the affected carriers, each genetic mutation group exhibited unique areas of atrophy but also a shared network involving the insula, orbitofrontal lobe, and anterior cingulate. Presymptomatic GM atrophy was observed particularly in the thalamus and cerebellum in the C9orf72 group, the anterior and medial temporal lobes in MAPT, and the posterior frontal and parietal lobes as well as striatum in GRN. Across all presymptomatic carriers, there were significant decreases in the anterior insula. These results suggest that although there are important differences in atrophy patterns for each group (which can be seen presymptomatically), there are also similarities (a fronto-insula-anterior cingulate network) that help explain the clinical commonalities of the disease.


NeuroImage: Clinical | 2017

White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort

Carole H. Sudre; Martina Bocchetta; David M. Cash; David L. Thomas; Ione O.C. Woollacott; Katrina M. Dick; John C. van Swieten; Barbara Borroni; Daniela Galimberti; Mario Masellis; Maria Carmela Tartaglia; James B. Rowe; Caroline Graff; Fabrizio Tagliavini; Giovanni B. Frisoni; Robert Laforce; Elizabeth Finger; Alexandre de Mendonça; Sandro Sorbi; Sebastien Ourselin; M. Jorge Cardoso; Jonathan D. Rohrer; Genfi Genetic Ftd Initiative

Genetic frontotemporal dementia is most commonly caused by mutations in the progranulin (GRN), microtubule-associated protein tau (MAPT) and chromosome 9 open reading frame 72 (C9orf72) genes. Previous small studies have reported the presence of cerebral white matter hyperintensities (WMH) in genetic FTD but this has not been systematically studied across the different mutations. In this study WMH were assessed in 180 participants from the Genetic FTD Initiative (GENFI) with 3D T1- and T2-weighed magnetic resonance images: 43 symptomatic (7 GRN, 13 MAPT and 23 C9orf72), 61 presymptomatic mutation carriers (25 GRN, 8 MAPT and 28 C9orf72) and 76 mutation negative non-carrier family members. An automatic detection and quantification algorithm was developed for determining load, location and appearance of WMH. Significant differences were seen only in the symptomatic GRN group compared with the other groups with no differences in the MAPT or C9orf72 groups: increased global load of WMH was seen, with WMH located in the frontal and occipital lobes more so than the parietal lobes, and nearer to the ventricles rather than juxtacortical. Although no differences were seen in the presymptomatic group as a whole, in the GRN cohort only there was an association of increased WMH volume with expected years from symptom onset. The appearance of the WMH was also different in the GRN group compared with the other groups, with the lesions in the GRN group being more similar to each other. The presence of WMH in those with progranulin deficiency may be related to the known role of progranulin in neuroinflammation, although other roles are also proposed including an effect on blood-brain barrier permeability and the cerebral vasculature. Future studies will be useful to investigate the longitudinal evolution of WMH and their potential use as a biomarker as well as post-mortem studies investigating the histopathological nature of the lesions.


Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring | 2017

The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: A longitudinal case report

Carolin Koriath; Martina Bocchetta; Ione O.C. Woollacott; Penny Norsworthy; Javier Simón-Sánchez; Cornelis Blauwendraat; Katrina M. Dick; Elizabeth Gordon; S Harding; Nick C. Fox; Sebastian J. Crutch; Jason D. Warren; Tamas Revesz; Tammaryn Lashley; Simon Mead; Jonathan D. Rohrer

Mutations in the TANK‐binding kinase 1 (TBK1) gene have recently been shown to cause frontotemporal dementia (FTD). However, the phenotype of TBK1‐associated FTD is currently unclear.


Frontiers in Neurology | 2017

Impaired Interoceptive Accuracy in Semantic Variant Primary Progressive Aphasia

Charles R. Marshall; Chris J.D. Hardy; Lucy L. Russell; Camilla N. Clark; Katrina M. Dick; Rebecca L. Bond; Catherine J. Mummery; Jonathan M. Schott; Jonathan D. Rohrer; James M. Kilner; Jason D. Warren

Background Interoception (the perception of internal bodily sensations) is strongly linked to emotional experience and sensitivity to the emotions of others in healthy subjects. Interoceptive impairment may contribute to the profound socioemotional symptoms that characterize frontotemporal dementia (FTD) syndromes, but remains poorly defined. Methods Patients representing all major FTD syndromes and healthy age-matched controls performed a heartbeat counting task as a measure of interoceptive accuracy. In addition, patients had volumetric MRI for voxel-based morphometric analysis, and their caregivers completed a questionnaire assessing patients’ daily-life sensitivity to the emotions of others. Results Interoceptive accuracy was impaired in patients with semantic variant primary progressive aphasia relative to healthy age-matched individuals, but not in behavioral variant frontotemporal dementia and nonfluent variant primary progressive aphasia. Impaired interoceptive accuracy correlated with reduced daily-life emotional sensitivity across the patient cohort, and with atrophy of right insula, cingulate, and amygdala on voxel-based morphometry in the impaired semantic variant group, delineating a network previously shown to support interoceptive processing in the healthy brain. Conclusion Interoception is a promising novel paradigm for defining mechanisms of reduced emotional reactivity, empathy, and self-awareness in neurodegenerative syndromes and may yield objective measures for these complex symptoms.


Journal of Neurology, Neurosurgery, and Psychiatry | 2018

Plasma tau is increased in frontotemporal dementia

Martha S. Foiani; Ione O.C. Woollacott; Carolin Heller; Martina Bocchetta; Amanda Heslegrave; Katrina M. Dick; Lucy L. Russell; Charles R. Marshall; Simon Mead; Jonathan M. Schott; Nick C. Fox; Jason D. Warren; Henrik Zetterberg; Jonathan D. Rohrer

Background Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder presenting clinically with personality change (behavioural variant FTD (bvFTD)) or language deficits (primary progressive aphasia (PPA)). About a third of FTD is familial with mutations in GRN, MAPT and C9orf72 being the major genetic causes. Robust biomarkers of the underlying pathology are still lacking in FTD with no markers currently being able to distinguish those with tau and TDP-43 inclusions during life. Methods This study used an ultrasensitive single molecule methodology to measure plasma tau concentrations in 176 participants: 71 with bvFTD, 83 with PPA and 22 healthy controls. The patient group included 36 with pathogenic mutations in either MAPT (n=12), GRN (n=9) or C9orf72 (n=15). Group comparisons were performed between clinical and genetic groups and controls using a linear regression model with bias-corrected bootstrap CIs. Correlative analyses were performed to investigate associations with measures of disease severity and progression. Results Higher plasma tau concentrations were seen in bvFTD (mean 1.96 (SD 1.07) pg/mL) and PPA (2.65 (2.15) pg/mL) compared with controls (1.67 (0.50) pg/mL). Investigating the PPA group further showed significantly higher levels compared with controls in each of the PPA subtypes (non-fluent, semantic and logopenic variants, as well as a fourth group not meeting criteria for one of the three main variants). In the genetic groups, only the MAPT group had significantly increased concentrations (2.62 (1.39) pg/mL) compared with controls. No significant correlations were seen with cross-sectional or longitudinal brain volumes, serum neurofilament light chain concentrations or disease duration. Conclusion Plasma tau levels are increased in FTD in all clinical groups, but in the genetic subtypes only in MAPT mutations, the group of patients who definitively have tau pathology at postmortem. Future studies will be required in pathologically confirmed cohorts to investigate this association further, and whether plasma tau will be helpful in differentiating patients with FTD with tau from those with other pathologies.


Annals of clinical and translational neurology | 2018

Cardiac responses to viewing facial emotion differentiate frontotemporal dementias

Charles R. Marshall; Christopher J.D. Hardy; Micah Allen; Lucy L. Russell; Camilla N. Clark; Rebecca L. Bond; Katrina M. Dick; Jonathan D. Rohrer; James M. Kilner; Jason D. Warren

To establish proof‐of‐principle for the use of heart rate responses as objective measures of degraded emotional reactivity across the frontotemporal dementia spectrum, and to demonstrate specific relationships between cardiac autonomic responses and anatomical patterns of neurodegeneration.


Alzheimer's Research & Therapy | 2018

Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales

Giorgio G. Fumagalli; Paola Basilico; Andrea Arighi; Martina Bocchetta; Katrina M. Dick; David M. Cash; S Harding; Matteo Mercurio; Chiara Fenoglio; Anna M. Pietroboni; Laura Ghezzi; John C. van Swieten; Barbara Borroni; Alexandre de Mendonça; Mario Masellis; Maria Carmela Tartaglia; James B. Rowe; Caroline Graff; Fabrizio Tagliavini; Giovanni B. Frisoni; Robert Laforce; Elizabeth Finger; Sandro Sorbi; Elio Scarpini; Jonathan D. Rohrer; Daniela Galimberti

BackgroundIn patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms.MethodsMagnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas).ResultsIntra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers.ConclusionsThese simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations.

Collaboration


Dive into the Katrina M. Dick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Warren

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Graff

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mario Masellis

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucy L. Russell

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge