Katrina M. Schrode
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katrina M. Schrode.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2014
Katrina M. Schrode; Nathan P. Buerkle; Elizabeth F. Brittan-Powell; Mark A. Bee
Our knowledge of the hearing abilities of frogs and toads is largely defined by work with a few well-studied species. One way to further advance comparative work on anuran hearing would be greater use of minimally invasive electrophysiological measures, such as the auditory brainstem response (ABR). This study used the ABR evoked by tones and clicks to investigate hearing in Cope’s gray treefrog (Hyla chrysoscelis). The objectives were to characterize the effects of sound frequency, sound pressure level, and subject sex and body size on ABRs. The ABR in gray treefrogs bore striking resemblance to ABRs measured in other animals. As stimulus level increased, ABR amplitude increased and latency decreased, and for responses to tones, these effects depended on stimulus frequency. Frequency-dependent differences in ABRs were correlated with expected differences in the tuning of two sensory end organs in the anuran inner ear (the amphibian and basilar papillae). The ABR audiogram indicated two frequency regions of increased sensitivity corresponding to the expected tuning of the two papillae. Overall, there was no effect of subject size and only small effects related to subject sex. Together, these results indicate the ABR is an effective method to study audition in anurans.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014
Nathan P. Buerkle; Katrina M. Schrode; Mark A. Bee
Anurans (frogs and toads) are important models for comparative studies of communication, auditory physiology, and neuroethology, but to date, most of our knowledge comes from in-depth studies of a relatively small number of model species. Using the well-studied green treefrog (Hyla cinerea), this study sought to develop and evaluate the use of auditory evoked potentials (AEPs) as a minimally invasive tool for investigating auditory sensitivity in a larger diversity of anuran species. The goals of the study were to assess the effects of frequency, signal level, sex, and body size on auditory brainstem response (ABR) amplitudes and latencies, characterize gross ABR morphology, and generate an audiogram that could be compared to several previously published audiograms for green treefrogs. Increasing signal level resulted in larger ABR amplitudes and shorter latencies, and these effects were frequency dependent. There was little evidence for an effect of sex or size on ABRs. Analyses consistently distinguished between responses to stimuli in the frequency ranges of the three previously-described populations of afferents that innervate the two auditory end organs in anurans. The overall shape of the audiogram shared prominent features with previously published audiograms. This study highlights the utility of AEPs as a valuable tool for the study of anuran auditory sensitivity.
The Journal of Experimental Biology | 2015
Katrina M. Schrode; Mark A. Bee
ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. Summary: Peripheral auditory systems of treefrogs are evolutionarily adapted to process the temporal fluctuations inherent in conspecific communication signals.
Noise & Health | 2017
Amanda M. Lauer; Katrina M. Schrode
Introduction: Sex differences in brain biochemistry, physiology, structure, and function have been gaining increasing attention in the scientific community. Males and females can have different responses to medications, diseases, and environmental variables. A small number of the approximately 7500 studies of noise-induced hearing loss (NIHL) have identified sex differences, but the mechanisms and characterization of these differences have not been thoroughly studied. The National Institutes of Health (NIH) issued a mandate in 2015 to include sex as a biological variable in all NIH-funded research beginning in January 2016. Materials and Methods: In the present study, the representation of sex as a biological variable in preclinical and basic studies of NIHL was quantified for a 5-year period from January 2011 to December 2015 prior to the implementation of the NIH mandate. Results: The analysis of 210 basic and preclinical studies showed that when sex is specified, experiments are predominantly performed on male animals. Discussion: This bias is present in studies completed in the United States and foreign institutions, and the proportion of studies using only male participants has actually increased over the 5-year period examined. Conclusion: These results underscore the need to invest resources in studying NIHL in both sexes to better understand how sex shapes the outcomes and to optimize treatment and prevention strategies.
Experimental and Clinical Psychopharmacology | 2013
Marc J. Kaufman; Amy C. Janes; Blaise deB. Frederick; Melanie Brimson-Théberge; Yunjie Tong; Samuel B. McWilliams; Ashley Bear; Timothy E. Gillis; Katrina M. Schrode; Perry F. Renshaw; S. Stevens Negus
Functional MRI (fMRI) has emerged as a powerful technique for assessing neural effects of psychoactive drugs and other stimuli. Several experimental approaches have been developed to use fMRI in anesthetized and awake animal subjects, each of which has its advantages and complexities. We sought to assess whether one particular method to scan alert postanesthetized animals can be used to assess fMRI effects of opioid agonists. To date, the use of fMRI as a method to compare pharmacological effects of opioid drugs has been limited. Such studies are important because mu and kappa opioid receptor agonists produce distinct profiles of behavioral effects related both to clinically desirable endpoints (e.g., analgesia) and to undesirable effects (e.g., abuse potential). This study sought to determine whether we could use our fMRI approach to compare acute effects of behaviorally equipotent (3.2 μg/kg) intravenous doses of fentanyl and U69,593 (doses that do not affect cardiorespiratory parameters). Scans were acquired in alert male cynomolgus macaques acclimated to undergo fMRI scans under restraint, absent excessive stress hormone increases. These opioid agonists activated bilateral striatal and nucleus accumbens regions of interest. At the dose tested, U69,593 induced greater left nucleus accumbens BOLD activation than fentanyl, while fentanyl activated left dorsal caudate nucleus more than U69,593. Our results suggest that our fMRI approach could be informative for comparing effects of opioid agonists.
eNeuro | 2018
Katrina M. Schrode; Michael A. Muniak; Ye-Hyun Kim; Amanda M. Lauer
Abstract Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A growing literature suggests that the auditory system can compensate for peripheral loss through increased central neural activity. The current study sought to investigate the link between noise exposure, increases in central gain, synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperreactive to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks (2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can compensate for peripheral loss to restore some aspects of auditory function.
Cell Reports | 2018
Gabriela Rodríguez; Darpan Chakraborty; Katrina M. Schrode; Rinki Saha; Isabel Uribe; Amanda M. Lauer; Hey Kyoung Lee
SUMMARY Plasticity of thalamocortical (TC) synapses is robust during early development and becomes limited in the adult brain. We previously reported that a short duration of deafening strengthens TC synapses in the primary visual cortex (V1) of adult mice. Here, we demonstrate that deafening restores NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of TC synapses onto principal neurons in V1 layer 4 (L4), which is accompanied by an increase in NMDAR function. In contrast, deafening did not recover long-term depression (LTD) at TC synapses. Potentiation of TC synapses by deafening is absent in parvalbumin-positive (PV+) interneurons, resulting in an increase in feedforward excitation to inhibition (E/I) ratio. Furthermore, we found that a brief duration of deafening adult mice recovers rapid ocular dominance plasticity (ODP) mainly by accelerating potentiation of the open-eye responses. Our results suggest that cross-modal sensory deprivation promotes adult cortical plasticity by specifically recovering TC-LTP and increasing the E/I ratio.
Ethology | 2010
Mark A. Bee; Jenna M. Cook; Elliot K. Love; Lisa R. O’Bryan; Beth A. Pettitt; Katrina M. Schrode; Alejandro Vélez
Behavioral Ecology and Sociobiology | 2012
Katrina M. Schrode; Jessica L. Ward; Alejandro Vélez; Mark A. Bee
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2014
Michael S. Caldwell; Norman Lee; Katrina M. Schrode; Anastasia R. Johns; Jakob Christensen-Dalsgaard; Mark A. Bee