Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuhide Igarashi is active.

Publication


Featured researches published by Katsuhide Igarashi.


Cell | 2007

Estrogen Prevents Bone Loss via Estrogen Receptor α and Induction of Fas Ligand in Osteoclasts

Takashi Nakamura; Yuuki Imai; Takahiro Matsumoto; Shingo Sato; Kazusane Takeuchi; Katsuhide Igarashi; Yoshifumi Harada; Yoshiaki Azuma; Andrée Krust; Yoko Yamamoto; Hiroshi Nishina; Shu Takeda; Hiroshi Takayanagi; Daniel Metzger; Jun Kanno; Kunio Takaoka; T. John Martin; Pierre Chambon; Shigeaki Kato

Estrogen prevents osteoporotic bone loss by attenuating bone resorption; however, the molecular basis for this is unknown. Here, we report a critical role for the osteoclastic estrogen receptor alpha (ERalpha) in mediating estrogen-dependent bone maintenance in female mice. We selectively ablated ERalpha in differentiated osteoclasts (ERalpha(DeltaOc/DeltaOc)) and found that ERalpha(DeltaOc/DeltaOc) females, but not males, exhibited trabecular bone loss, similar to the osteoporotic bone phenotype in postmenopausal women. Further, we show that estrogen induced apoptosis and upregulation of Fas ligand (FasL) expression in osteoclasts of the trabecular bones of WT but not ERalpha(DeltaOc/DeltaOc) mice. The expression of ERalpha was also required for the induction of apoptosis by tamoxifen and estrogen in cultured osteoclasts. Our results support a model in which estrogen regulates the life span of mature osteoclasts via the induction of the Fas/FasL system, thereby providing an explanation for the osteoprotective function of estrogen as well as SERMs.


Nature | 2011

GlcNAcylation of histone H2B facilitates its monoubiquitination

Ryoji Fujiki; Waka Hashiba; Hiroki Sekine; Atsushi Yokoyama; Toshihiro Chikanishi; Saya Ito; Yuuki Imai; Jae-Hoon Kim; Housheng Hansen He; Katsuhide Igarashi; Jun Kanno; Fumiaki Ohtake; Hirochika Kitagawa; Robert G. Roeder; Myles Brown; Shigeaki Kato

Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.


Hippocampus | 2011

Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment

Naoko Kuzumaki; Daigo Ikegami; Rie Tamura; Nana Hareyama; Satoshi Imai; Michiko Narita; Kazuhiro Torigoe; Keiichi Niikura; Hideyuki Takeshima; Takayuki Ando; Katsuhide Igarashi; Jun Kanno; Toshikazu Ushijima; Tsutomu Suzuki; Minoru Narita

Environmental enrichment is an experimental paradigm that increases brain‐derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3–4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet‐derived growth factor A (PDGF‐A), PDGF‐B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus.


Proceedings of the National Academy of Sciences of the United States of America | 2010

NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs

Atsushi Suzuki; Katsuhide Igarashi; Ken-ichi Aisaki; Jun Kanno; Yumiko Saga

Nanos is one of the evolutionarily conserved proteins implicated in germ cell development. We have previously shown that NANOS2 plays an important role in both the maintenance and sexual development of germ cells. However, the molecular mechanisms underlying these events have remained elusive. In our present study, we found that NANOS2 localizes to the P-bodies, known centers of RNA degradation that are abundantly accumulated in male gonocytes. We further identified by immunoprecipitation that the components of the CCR4-NOT deadenylation complex are NANOS2-interacting proteins and found that NANOS2 promotes the localization of CNOT proteins to P-bodies in vivo. We also elucidated that the NANOS2/CCR4-NOT complex has deadenylase activity in vitro, and that some of the RNAs implicated in meiosis interact with NANOS2 and are accumulated in its absence. Our current data thus indicate that the expression of these RNA molecules is normally suppressed via a NANOS2-mediated mechanism. We propose from our current findings that NANOS2-interacting RNAs may be recruited to P-bodies and degraded by the enzymes contained therein through NANOS2-mediated deadenylation.


Molecular and Cellular Biology | 2009

Hypersensitivity of Aryl Hydrocarbon Receptor-Deficient Mice to Lipopolysaccharide-Induced Septic Shock

Hiroki Sekine; Junsei Mimura; Motohiko Oshima; Hiromi Okawa; Jun Kanno; Katsuhide Igarashi; Frank J. Gonzalez; Togo Ikuta; Kaname Kawajiri; Yoshiaki Fujii-Kuriyama

ABSTRACT Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is known to mediate a wide variety of pharmacological and toxicological effects caused by polycyclic aromatic hydrocarbons. Recent studies have revealed that AhR is involved in the normal development and homeostasis of many organs. Here, we demonstrate that AhR knockout (AhR KO) mice are hypersensitive to lipopolysaccharide (LPS)-induced septic shock, mainly due to the dysfunction of their macrophages. In response to LPS, bone marrow-derived macrophages (BMDM) of AhR KO mice secreted an enhanced amount of interleukin-1β (IL-1β). Since the enhanced IL-1β secretion was suppressed by supplementing Plasminogen activator inhibitor-2 (Pai-2) expression through transduction with Pai-2-expressing adenoviruses, reduced Pai-2 expression could be a cause of the increased IL-1β secretion by AhR KO mouse BMDM. Analysis of gene expression revealed that AhR directly regulates the expression of Pai-2 through a mechanism involving NF-κB but not AhR nuclear translocator (Arnt), in an LPS-dependent manner. Together with the result that administration of the AhR ligand 3-methylcholanthrene partially protected mice with wild-type AhR from endotoxin-induced death, these results raise the possibility that an appropriate AhR ligand may be useful for treating patients with inflammatory disorders.


Nature Cell Biology | 2011

PKA-dependent regulation of the histone lysine demethylase complex PHF2–ARID5B

Atsushi Baba; Fumiaki Ohtake; Yosuke Okuno; Kenichi Yokota; Maiko Okada; Yuuki Imai; Min Ni; Clifford A. Meyer; Katsuhide Igarashi; Jun Kanno; Myles Brown; Shigeaki Kato

Reversible histone methylation and demethylation are highly regulated processes that are crucial for chromatin reorganization and regulation of gene transcription in response to extracellular conditions. However, the mechanisms that regulate histone-modifying enzymes are largely unknown. Here, we characterized a protein kinase A (PKA)-dependent histone lysine demethylase complex, PHF2–ARID5B. PHF2, a jmjC demethylase, is enzymatically inactive by itself, but becomes an active H3K9Me2 demethylase through PKA-mediated phosphorylation. We found that phosphorylated PHF2 then associates with ARID5B, a DNA-binding protein, and induce demethylation of methylated ARID5B. This modification leads to targeting of the PHF2–ARID5B complex to its target promoters, where it removes the repressive H3K9Me2 mark. These findings suggest that the PHF2–ARID5B complex is a signal-sensing modulator of histone methylation and gene transcription, in which phosphorylation of PHF2 enables subsequent formation of a competent and specific histone demethylase complex.


Development | 2006

Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse

Yusuke Watanabe; Hiroki Kokubo; Sachiko Miyagawa-Tomita; Maho Endo; Katsuhide Igarashi; Ken ichi Aisaki; Jun Kanno; Yumiko Saga

Notch signaling is implicated in many developmental processes. In our current study, we have employed a transgenic strategy to investigate the role of Notch signaling during cardiac development in the mouse. Cre recombinase-mediated Notch1 (NICD1) activation in the mesodermal cell lineage leads to abnormal heart morphogenesis, which is characterized by deformities of the ventricles and atrioventricular (AV) canal. The major defects observed include impaired ventricular myocardial differentiation, the ectopic appearance of cell masses in the AV cushion, the right-shifted interventricular septum (IVS) and impaired myocardium of the AV canal. However, the fates of the endocardium and myocardium were not disrupted in NICD1-activated hearts. One of the Notch target genes, Hesr1, was found to be strongly induced in both the ventricle and the AV canal of NICD1-activated hearts. However, a knockout of the Hesr1 gene from NICD-activated hearts rescues only the abnormality of the AV myocardium. We searched for additional possible targets of NICD1 activation by GeneChip analysis and found that Wnt2, Bmp6, jagged 1 and Tnni2 are strongly upregulated in NICD1-activated hearts, and that the activation of these genes was also observed in the absence of Hesr1. Our present study thus indicates that the Notch1 signaling pathway plays a suppressive role both in AV myocardial differentiation and the maturation of the ventricular myocardium.


BMC Genomics | 2006

Per cell normalization method for mRNA measurement by quantitative PCR and microarrays

Jun Kanno; Ken-ichi Aisaki; Katsuhide Igarashi; Noriyuki Nakatsu; Atsushi Ono; Yukio Kodama; Taku Nagao

BackgroundTranscriptome data from quantitative PCR (Q-PCR) and DNA microarrays are typically obtained from a fixed amount of RNA collected per sample. Therefore, variations in tissue cellularity and RNA yield across samples in an experimental series compromise accurate determination of the absolute level of each mRNA species per cell in any sample. Since mRNAs are copied from genomic DNA, the simplest way to express mRNA level would be as copy number per template DNA, or more practically, as copy number per cell.ResultsHere we report a method (designated the Percellome method) for normalizing the expression of mRNA values in biological samples. It provides a per cell readout in mRNA copy number and is applicable to both quantitative PCR (Q-PCR) and DNA microarray studies. The genomic DNA content of each sample homogenate was measured from a small aliquot to derive the number of cells in the sample. A cocktail of five external spike RNAs admixed in a dose-graded manner (dose-graded spike cocktail; GSC) was prepared and added to each homogenate in proportion to its DNA content. In this way, the spike mRNAs represented absolute copy numbers per cell in the sample. The signals from the five spike mRNAs were used as a dose-response standard curve for each sample, enabling us to convert all the signals measured to copy numbers per cell in an expression profile-independent manner. A series of samples was measured by Q-PCR and Affymetrix GeneChip microarrays using this Percellome method, and the results showed up to 90 % concordance.ConclusionPercellome data can be compared directly among samples and among different studies, and between different platforms, without further normalization. Therefore, percellome normalization can serve as a standard method for exchanging and comparing data across different platforms and among different laboratories.


Development | 2007

The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite

Mitsuru Morimoto; Nobuo Sasaki; Masayuki Oginuma; Makoto Kiso; Katsuhide Igarashi; Ken-ichi Aizaki; Jun Kanno; Yumiko Saga

The Mesp2 transcription factor plays essential roles in segmental border formation and in the establishment of rostro-caudal patterning within a somite. A possible Mesp2 target gene, Ripply2, was identified by microarray as being downregulated in the Mesp2-null mouse. Ripply2 encodes a putative transcriptional co-repressor containing a WRPW motif. We find that Mesp2 binds to the Ripply2 gene enhancer, indicating that Ripply2 is a direct target of Mesp2. We then examined whether Ripply2 is responsible for the repression of genes under the control of Mesp2 by generating a Ripply2-knockout mouse. Unexpectedly, Ripply2-null embryos show a rostralized phenotype, in contrast to Mesp2-null mice. Gene expression studies together with genetic analyses further revealed that Ripply2 is a negative regulator of Mesp2 and that the loss of the Ripply2 gene results in the prolonged expression of Mesp2, leading to a rostralized phenotype via the suppression of Notch signaling. Our study demonstrates that a Ripply2-Mesp2 negative-feedback loop is essential for the periodic generation of the rostro-caudal polarity within a somite.


Biology of Reproduction | 2011

Endocrine Disrupter Bisphenol A Increases In Situ Estrogen Production in the Mouse Urogenital Sinus

Shigeki Arase; Kenichiro Ishii; Katsuhide Igarashi; Ken-ichi Aisaki; Yuko Yoshio; Ayami Matsushima; Yasuyuki Shimohigashi; Kiminobu Arima; Jun Kanno; Yoshiki Sugimura

The balance between androgens and estrogens is very important in the development of the prostate, and even small changes in estrogen levels, including those of estrogen-mimicking chemicals, can lead to serious changes. Bisphenol A (BPA), an endocrine-disrupting chemical, is a well-known, ubiquitous, estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we examined alterations of the in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS). In the BPA-treated UGS, estradiol (E2) levels and CYP19A1 (cytochrome P450 aromatase) activity were significantly increased compared with those of the untreated and diethylstilbestrol (DES)-treated UGS. The mRNAs of steroidogenic enzymes, Cyp19a1 and Cyp11a1, and the sex-determining gene, Nr5a1, were up-regulated specifically in the BPA-treated group. The up-regulation of mRNAs was observed in the mesenchymal component of the UGS as well as in the cerebellum, heart, kidney, and ovary but not in the testis. The number of aromatase-expressing mesenchymal cells in the BPA-treated UGS was approximately twice that in the untreated and DES-treated UGS. The up-regulation of Esrrg mRNA was observed in organs for which mRNAs of steroidogenic enzymes were also up-regulated. We demonstrate here that fetal exposure to low-dose BPA has the unique action of increasing in situ E2 levels and CYP19A1 (aromatase) activity in the mouse UGS. Our data suggest that BPA might interact with in situ steroidogenesis by altering tissue components, such as the accumulation of aromatase-expressing mesenchymal cells, in particular organs.

Collaboration


Dive into the Katsuhide Igarashi's collaboration.

Top Co-Authors

Avatar

Jun Kanno

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Shibutani

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge