Katsuhiko Fukai
National Agriculture and Food Research Organization
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuhiko Fukai.
Archives of Virology | 2015
Katsuhiko Fukai; Manabu Yamada; Kazuki Morioka; Seiichi Ohashi; Kazuo Yoshida; Rie Kitano; Reiko Yamazoe; Toru Kanno
Foot-and-mouth disease virus (FMDV) infection was successfully initiated in pigs by intraoral inoculation of both 106 and 103 TCID50 of FMDV O/JPN/2010 isolated from the 2010 epidemic in Japan. By intranasal inoculation, infection was established in pigs with 106 TCID50 of the isolate, but not with 103 TCID50 of the isolate. In the pigs inoculated with 106 TCID50 of the isolate, viruses and viral RNAs were obtained earlier from the pigs inoculated by the intraoral route than from the pigs inoculated by the intranasal route. These results support the theory that primary infection of a pig herd is more likely to occur by ingestion than by inhalation and that the oral cavity is likely to be a major entry route for FMDV in naturally exposed pigs.
Archives of Virology | 2014
Hiroyuki Onozato; Katsuhiko Fukai; Rie Kitano; Reiko Yamazoe; Kazuki Morioka; Manabu Yamada; Seiichi Ohashi; Kazuo Yoshida; Toru Kanno
In this study, we carried out experimental infections in cattle and goats using a foot-and-mouth disease virus (FMDV) isolate from the 2010 epidemic in Japan to analyze clinical manifestations, virus-shedding patterns and antibody responses in the animals. We found that the FMDV O/JPN/2010 isolate is virulent in cattle and goats, produces clinical signs, is spread efficiently by direct contact within the same species, and is persistently infectious in cattle. Quantitative analysis of levels of viral RNA in the tissues of cattle and goats infected with the isolate showed that the pharyngeal region is an important major target of the FMDV O/JPN/2010. Time course data of viral loads, excretion and transmission of the FMDV O/JPN/2010 in this study are key in providing quantitative data essential for epidemiological investigation and risk analysis in relation to disease controls.
Journal of Veterinary Diagnostic Investigation | 2015
Katsuhiko Fukai; Kazuki Morioka; Manabu Yamada; Tatsuya Nishi; Kazuo Yoshida; Rie Kitano; Reiko Yamazoe; Toru Kanno
The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-αvβ6 have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-αvβ6 cells has not been evaluated using clinical samples other than epithelial materials. In addition, both cell lines have never been compared, in terms of use for FMDV isolation, under the same conditions. Therefore, in the current study, the virus isolation rates of both cell lines were compared using clinical samples collected from animals infected experimentally with FMDV. Viruses were successfully isolated from clinical samples other than epithelial suspensions for both cell lines. The virus isolation rates for the 2 cell lines were not significantly different. The Cohen kappa coefficients between the virus isolation results for both cell lines were significantly high. Taken together, these results confirmed the suitability of LFBK-αvβ6 cells for FMDV isolation from clinical samples other than epithelial suspensions. The levels of susceptibility of both cell lines to FMDV isolation were also confirmed to be almost the same.
PLOS ONE | 2014
Kazuki Morioka; Katsuhiko Fukai; Kenichi Sakamoto; Kazuo Yoshida; Toru Kanno
A monoclonal antibody-based sandwich direct ELISA (MSD-ELISA) method was previously developed for foot-and-mouth disease (FMD) viral antigen detection. Here we evaluated the sensitivity and specificity of two FMD viral antigen detection MSD-ELISAs and compared them with conventional indirect sandwich (IS)-ELISA. The MSD-ELISAs were able to detect the antigen in saliva samples of experimentally-infected pigs for a longer term compared to the IS-ELISA. We also used 178 RT-PCR-positive field samples from cattle and pigs affected by the 2010 type-O FMD outbreak in Japan, and we found that the sensitivities of both MSD-ELISAs were about 7 times higher than that of the IS-ELISA against each sample (P<0.01). In terms of the FMD-positive farm detection rate, the sensitivities of the MSD-ELISAs were about 6 times higher than that of the IS-ELISA against each farm (P<0.01). Although it is necessary to conduct further validation study using the other virus strains, MSD-ELISAs could be appropriate as a method to replace IS-ELISA for FMD antigen detection.
PLOS ONE | 2015
Kazuki Morioka; Katsuhiko Fukai; Kazuo Yoshida; Rie Kitano; Reiko Yamazoe; Manabu Yamada; Tatsuya Nishi; Toru Kanno
We developed a lateral flow strip using monoclonal antibodies (MAbs) which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV). This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 103 to 104 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden), which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs) showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.
Veterinary Microbiology | 2017
Tatsuya Nishi; Manabu Yamada; Katsuhiko Fukai; Nobuaki Shimada; Kazuki Morioka; Kazuo Yoshida; Kenichi Sakamoto; Toru Kanno; Makoto Yamakawa
Foot-and-mouth disease virus (FMDV) is highly contagious and has a high mutation rate, leading to extensive genetic variation. To investigate how FMDV genetically evolves over a short period of an epidemic after initial introduction into an FMD-free area, whole L-fragment sequences of 104 FMDVs isolated from the 2010 epidemic in Japan, which continued for less than three months were determined and phylogenetically and comparatively analyzed. Phylogenetic analysis of whole L-fragment sequences showed that these isolates were classified into a single group, indicating that FMDV was introduced into Japan in the epidemic via a single introduction. Nucleotide sequences of 104 virus isolates showed more than 99.56% pairwise identity rates without any genetic deletion or insertion, although no sequences were completely identical with each other. These results indicate that genetic substitutions of FMDV occurred gradually and constantly during the epidemic and generation of an extensive mutant virus could have been prevented by rapid eradication strategy. From comparative analysis of variability of each FMDV protein coding region, VP4 and 2C regions showed the highest average identity rates and invariant rates, and were confirmed as highly conserved. In contrast, the protein coding regions VP2 and VP1 were confirmed to be highly variable regions with the lowest average identity rates and invariant rates, respectively. Our data demonstrate the importance of rapid eradication strategy in an FMD epidemic and provide valuable information on the genome variability of FMDV during the short period of an epidemic.
Journal of Veterinary Medical Science | 2017
Katsuhiko Fukai; Tatsuya Nishi; Nobuaki Shimada; Kazuki Morioka; Manabu Yamada; Kazuo Yoshida; Kenichi Sakamoto; Rie Kitano; Reiko Yamazoe; Makoto Yamakawa
The effectiveness of a vaccine preserved for emergency use in Japan was analyzed under experimental conditions using cows and pigs in order to retrospectively evaluate the effectiveness of the emergency vaccination performed in the 2010 epidemic in Japan. Cows and pigs were administered a vaccine preserved for emergency use in Japan at 3 or 30 days before virus infection (dbv) and were subsequently infected with the foot-and-mouth disease virus (FMDV) O/JPN/2010, which was isolated in the 2010 epidemic in Japan. All animals vaccinated at 30 dbv and one of three pigs vaccinated at 3 dbv showed no vesicular lesions during the experimental period. The virus titers and viral RNA loads obtained from clinical samples were lower in the vaccinated cows than in the non-vaccinated cows. The viral excretion periods were shorter in the vaccinated cows than in the non-vaccinated cows. In contrast, in the vaccinated pigs, the virus titers and viral RNA loads obtained from the samples, except for those obtained from sera, were not decreased significantly, and the viral excretion periods were not sufficiently shortened. These results suggest that the vaccine can protect against clinical signs of infection by the FMDV O/JPN/2010 in animals; however, it should be noted that in vaccinated and infected animals, especially pigs, clinical samples, such as saliva and nasal swabs, may contain excreted viruses, even if no clinical signs were exhibited.
Journal of Veterinary Medical Science | 2016
Katsuhiko Fukai; Tatsuya Nishi; Kazuki Morioka; Manabu Yamada; Kazuo Yoshida; Rie Kitano; Reiko Yamazoe; Toru Kanno
An ELISA kit for detection of antibodies to a nonstructural protein of foot-and-mouth disease (FMDV) was further evaluated using sequentially collected serum samples of experimentally infected animals, because the sensitivity of the kit used in a previous study was significantly low in field animals. The kit fully detected antibodies in infected animals without vaccination; however, the first detections of antibodies by the kit were later than those by the liquid-phase blocking ELISA that is used for serological surveillance in the aftermath of outbreaks in Japan, for detection of antibodies to structural proteins of FMDV. Additionally, although the kit effectively detected antibodies in infected cattle with vaccination, there were several infected pigs with vaccination for which the kit did not detect antibodies during the experimental period. Taken together, the kit may not be suitable for serological surveillance after an FMD outbreak either with or without emergency vaccination in FMD-free countries.
Journal of Veterinary Diagnostic Investigation | 2013
Katsuhiko Fukai; Hiroyuki Onozato; Rie Kitano; Reiko Yamazoe; Kazuki Morioka; Manabu Yamada; Seiichi Ohashi; Kazuo Yoshida; Toru Kanno
The availability of the fetal goat tongue cell line ZZ-R 127 for the isolation of Foot-and-mouth disease virus (FMDV) has not been evaluated using clinical samples other than epithelial suspensions. Therefore, in the current study, the availability of ZZ-R 127 cells for the isolation of FMDV was evaluated using clinical samples (e.g., sera, nasal swabs, saliva, feces, and oropharyngeal fluids) collected from animals experimentally infected with an FMDV isolate. Virus isolation rates for the ZZ-R 127 cells were statistically higher than those for the porcine kidney cell line (IB-RS-2) in experimental infections using cattle, goats, and pigs (P < 0.01). Virus titers in the ZZ-R 127 cells were also statistically higher than those in the IB-RS-2 cells. The availability of ZZ-R 127 cells for the isolation of FMDV not only from epithelial suspensions but also from other clinical samples was confirmed in the current study.
Journal of Veterinary Medical Science | 2018
Katsuhiko Fukai; Tatsuya Nishi; Nobuaki Shimada; Kazuki Morioka; Manabu Yamada; Kazuo Yoshida; Makoto Yamakawa
When foot-and-mouth disease (FMD) occurs and a “vaccination-to-live” policy is adopted in a country, the country must perform serological surveillance of a nonstructural protein (NSP) of FMD virus. The NCPanaftosa kit is the only kit for detecting antibodies to NSPs that is officially recognized as the reference regent by the World Organization for Animal Health; however, it is only used in South American countries. In this study, the specificity and sensitivity of the NCPanaftosa kit were compared with those of the PrioCHECK kit sold by an international company. Results in this study suggest that the PrioCHECK kit performs similarly to the NCPanaftosa kit in detecting antibodies to the NSP in the cattle population.