Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuhiko Naoki is active.

Publication


Featured researches published by Katsuhiko Naoki.


Nature Medicine | 2008

Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study

Kerby Shedden; Jeremy M. G. Taylor; Steven A. Enkemann; Ming-Sound Tsao; Timothy J. Yeatman; William L. Gerald; Steven Eschrich; Igor Jurisica; Thomas J. Giordano; David E. Misek; Andrew C. Chang; Chang Qi Zhu; Daniel Strumpf; Samir M. Hanash; Frances A. Shepherd; Keyue Ding; Lesley Seymour; Katsuhiko Naoki; Nathan A. Pennell; Barbara A. Weir; Roel G.W. Verhaak; Christine Ladd-Acosta; Todd R. Golub; Michael Gruidl; Anupama Sharma; Janos Szoke; Maureen F. Zakowski; Valerie W. Rusch; Mark G. Kris; Agnes Viale

Although prognostic gene expression signatures for survival in early-stage lung cancer have been proposed, for clinical application, it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training–testing, multi-site, blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) could be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early-stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas.


Cancer Research | 2005

Functional Expression and Mutations of c-Met and Its Therapeutic Inhibition with SU11274 and Small Interfering RNA in Non-Small Cell Lung Cancer

Patrick C. Ma; Ramasamy Jagadeeswaran; Simha Jagadeesh; Maria Tretiakova; Vidya Nallasura; Edward A. Fox; Mark Hansen; Erik Schaefer; Katsuhiko Naoki; Alan S. Lader; William G. Richards; David J. Sugarbaker; Aliya N. Husain; James G. Christensen; Ravi Salgia

Non-small cell lung cancer (NSCLC) is a difficult disease to treat. The c-Met receptor is an attractive potential target for novel therapeutic inhibition in human cancers. We provide strong evidence that c-Met is overexpressed, activated, and sometimes mutated in NSCLC cell lines and tumor tissues. Expression of c-Met was found in all (100%) of the NSCLC tumor tissues examined (n = 23) and most (89%) of the cell lines (n = 9). Sixty-one percent of tumor tissues strongly expressed total c-Met, especially adenocarcinoma (67%). Specific expression of phospho-Met (p-Met) [Y1003] and [Y1230/1234/1235] was seen by immunohistochemistry. p-Met expression was preferentially observed at the NSCLC tumor invasive fronts. c-Met alterations were identified within the semaphorin domain (E168D, L299F, S323G, and N375S) and the juxtamembrane domain (R988C, R988C + T1010I, S1058P, and alternative splice product skipping entire juxtamembrane domain) of a NSCLC cell line and adenocarcinoma tissues. We validated c-Met as potential therapeutic target using small interfering RNA down-regulation of the receptor expression by 50% to 60% in NSCLC cells. This led to inhibition of p-Met and phospho-AKT and up to 57.1 +/- 7.2% cell viability inhibition at 72 hours. The selective small molecule inhibitor of c-Met SU11274 inhibited cell viability in c-Met-expressing NSCLC cells. SU11274 also abrogated hepatocyte growth factor-induced phosphorylation of c-Met and its downstream signaling. Here, we provide first direct evidence by small interfering RNA targeting and small molecule inhibitor that c-Met is important in NSCLC biology and biochemistry. These results indicate that c-Met inhibition will be an important therapeutic strategy against NSCLC to improve its clinical outcome.


Cancer Research | 2005

Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis

Xiaojun Zhao; Barbara A. Weir; Thomas LaFramboise; Ming Lin; Rameen Beroukhim; Levi A. Garraway; Javad Beheshti; Jeffrey C. Lee; Katsuhiko Naoki; William G. Richards; David J. Sugarbaker; Fei Chen; Mark A. Rubin; Pasi A. Jänne; Luc Girard; John D. Minna; David C. Christiani; Cheng Li; William R. Sellers; Matthew Meyerson

Genome-wide copy number changes were analyzed in 70 primary human lung carcinoma specimens and 31 cell lines derived from human lung carcinomas, with high-density arrays representing approximately 115,000 single nucleotide polymorphism loci. In addition to previously characterized loci, two regions of homozygous deletion were found, one near the PTPRD locus on chromosome segment 9p23 in four samples representing both small cell lung carcinoma (SCLC) and non-small cell lung carcinoma (NSCLC) and the second on chromosome segment 3q25 in one sample each of NSCLC and SCLC. High-level amplifications were identified within chromosome segment 8q12-13 in two SCLC specimens, 12p11 in two NSCLC specimens and 22q11 in four NSCLC specimens. Systematic copy number analysis of tyrosine kinase genes identified high-level amplification of EGFR in three NSCLC specimens, FGFR1 in two specimens and ERBB2 and MET in one specimen each. EGFR amplification was shown to be independent of kinase domain mutational status.


Cancer Research | 2004

Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.

Mohamed Bentires-Alj; J. Guillermo Paez; Frank S. David; Heike Keilhack; Balazs Halmos; Katsuhiko Naoki; John M. Maris; Andrea L. Richardson; Alberto Bardelli; David J. Sagarbaker; William G. Richards; Jinyan Du; Luc Girard; John D. Minna; Mignon L. Loh; David E. Fisher; Victor E. Velculescu; Bert Vogelstein; Matthew Meyerson; William R. Sellers; Benjamin G. Neel

The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy.


Journal of Clinical Oncology | 2010

Prognostic and Predictive Gene Signature for Adjuvant Chemotherapy in Resected Non–Small-Cell Lung Cancer

Chang Qi Zhu; Keyue Ding; Dan Strumpf; Barbara A. Weir; Matthew Meyerson; Nathan A. Pennell; Roman K. Thomas; Katsuhiko Naoki; Christine Ladd-Acosta; Ni Liu; Melania Pintilie; Sandy D. Der; Lesley Seymour; Igor Jurisica; Frances A. Shepherd; Ming Sound Tsao

PURPOSE The JBR.10 trial demonstrated benefit from adjuvant cisplatin/vinorelbine (ACT) in early-stage non-small-cell lung cancer (NSCLC). We hypothesized that expression profiling may identify stage-independent subgroups who might benefit from ACT. PATIENTS AND METHODS Gene expression profiling was conducted on mRNA from 133 frozen JBR.10 tumor samples (62 observation [OBS], 71 ACT). The minimum gene set that was selected for the greatest separation of good and poor prognosis patient subgroups in OBS patients was identified. The prognostic value of this gene signature was tested in four independent published microarray data sets and by quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR). RESULTS A 15-gene signature separated OBS patients into high-risk and low-risk subgroups with significantly different survival (hazard ratio [HR], 15.02; 95% CI, 5.12 to 44.04; P < .001; stage I HR, 13.31; P < .001; stage II HR, 13.47; P < .001). The prognostic effect was verified in the same 62 OBS patients where gene expression was assessed by qPCR. Furthermore, it was validated consistently in four separate microarray data sets (total 356 stage IB to II patients without adjuvant treatment) and additional JBR.10 OBS patients by qPCR (n = 19). The signature was also predictive of improved survival after ACT in JBR.10 high-risk patients (HR, 0.33; 95% CI, 0.17 to 0.63; P = .0005), but not in low-risk patients (HR, 3.67; 95% CI, 1.22 to 11.06; P = .0133; interaction P < .001). Significant interaction between risk groups and ACT was verified by qPCR. CONCLUSION This 15-gene expression signature is an independent prognostic marker in early-stage, completely resected NSCLC, and to our knowledge, is the first signature that has demonstrated the potential to select patients with stage IB to II NSCLC most likely to benefit from adjuvant chemotherapy with cisplatin/vinorelbine.


Journal of Clinical Oncology | 2006

Gene Expression Profiling Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient Cohorts

D. Neil Hayes; Stefano Monti; Giovanni Parmigiani; C. Blake Gilks; Katsuhiko Naoki; Arindam Bhattacharjee; Mark A. Socinski; Charles Perou; Matthew Meyerson

PURPOSE Published reports suggest that DNA microarrays identify clinically meaningful subtypes of lung adenocarcinomas not recognizable by other routine tests. This report is an investigation of the reproducibility of the reported tumor subtypes. METHODS Three independent cohorts of patients with lung cancer were evaluated using a variety of DNA microarray assays. Using the integrative correlations method, a subset of genes was selected, the reliability of which was acceptable across the different DNA microarray platforms. Tumor subtypes were selected using consensus clustering and genes distinguishing subtypes were identified using the weighted difference statistic. Gene lists were compared across cohorts using centroids and gene set enrichment analysis. RESULTS Cohorts of 31, 72, and 128 adenocarcinomas were generated for a total of 231 microarrays, each with 2,553 reliable genes. Three adenocarcinoma subtypes were identified in each cohort. These were named bronchioid, squamoid, and magnoid according to their respective correlations with gene expression patterns from histologically defined bronchioalveolar carcinoma, squamous cell carcinoma, and large-cell carcinoma. Tumor subtypes were distinguishable by many hundreds of genes, and lists generated in one cohort were predictive of tumor subtypes in the two other cohorts. Tumor subtypes correlated with clinically relevant covariates, including stage-specific survival and metastatic pattern. Most notably, bronchioid tumors were correlated with improved survival in early-stage disease, whereas squamoid tumors were associated with better survival in advanced disease. CONCLUSION DNA microarray analysis of lung adenocarcinomas identified reproducible tumor subtypes which differ significantly in clinically important behaviors such as stage-specific survival.


Cancer Cell International | 2008

Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells

Hideo Watanabe; Kenzo Soejima; Hiroyuki Yasuda; Ichiro Kawada; Ichiro Nakachi; Satoshi Yoda; Katsuhiko Naoki; Akitoshi Ishizaka

BackgroundAlterations in the processing of the genetic information in carcinogenesis result from stable genetic mutations or epigenetic modifications. It is becoming clear that nucleosomal histones are central to proper gene expression and that aberrant DNA methylation of genes and histone methylation plays important roles in tumor progression. To date, several histone lysine methyltransferases (HKMTs) have been identified and histone lysine methylation is now considered to be a critical regulator of transcription. However, still relatively little is known about the role of HKMTs in tumorigenesis.ResultsWe observed differential HKMT expression in a lung cancer model in which normal human bronchial epithelial (NHBE) cells expressing telomerase, SV40 large T antigen, and Ras were immortal, formed colonies in soft agar, and expressed specific HKMTs for H3 lysine 9 and 27 residues but not for H3 lysine 4 residue. Modifications in the H3 tails affect the binding of proteins to the histone tails and regulate protein function and the position of lysine methylation marks a gene to be either activated or repressed. In the present study, suppression by siRNA of HKMTs (EZH2, G9A, SETDB1 and SUV39H1) that are over-expressed in immortalized and transformed cells lead to reduced cell proliferation and much less anchorage-independent colony growth. We also found that the suppression of H3-K9, G9A and SUV39H1 induced apoptosis and the suppression of H3-K27, EZH2 caused G1 arrest.ConclusionOur results indicate the potential of these HKMTs in addition to the other targets for epigenetics such as DNMTs and HDACs to be interesting therapeutic targets.


British Journal of Cancer | 2008

Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients.

Jussi Koivunen; Jhingook Kim; Jinseon Lee; Andrew Rogers; Joon Oh Park; Xiaojun Zhao; Katsuhiko Naoki; Isamu Okamoto; Kazuhiko Nakagawa; Beow Y. Yeap; Matthew Meyerson; Kwok-Kin Wong; William G. Richards; David J. Sugarbaker; Bruce E. Johnson; Pasi A. Jänne

Somatic mutations of LKB1 tumour suppressor gene have been detected in human cancers including non-small cell lung cancer (NSCLC). The relationship between LKB1 mutations and clinicopathological characteristics and other common oncogene mutations in NSCLC is inadequately described. In this study we evaluated tumour specimens from 310 patients with NSCLC including those with adenocarcinoma, adenosquamous carcinoma, and squamous cell carcinoma histologies. Tumours were obtained from patients of US (n=143) and Korean (n=167) origin and screened for LKB1, KRAS, BRAF, and EGFR mutations using RT—PCR-based SURVEYOR-WAVE method followed by Sanger sequencing. We detected mutations in the LKB1 gene in 34 tumours (11%). LKB1 mutation frequency was higher in NSCLC tumours of US origin (17%) compared with 5% in NSCLCs of Korean origin (P=0.001). They tended to occur more commonly in adenocarcinomas (13%) than in squamous cell carcinomas (5%) (P=0.066). LKB1 mutations associated with smoking history (P=0.007) and KRAS mutations (P=0.042) were almost mutually exclusive with EGFR mutations (P=0.002). The outcome of stages I and II NSCLC patients treated with surgery alone did not significantly differ based on LKB1 mutation status. Our study provides clinical and molecular characteristics of NSCLC, which harbour LKB1 mutations.


Molecular Cancer Research | 2013

Activation of the FGF2-FGFR1 Autocrine Pathway: A Novel Mechanism of Acquired Resistance to Gefitinib in NSCLC

Hideki Terai; Kenzo Soejima; Hiroyuki Yasuda; Sohei Nakayama; Junko Hamamoto; Daisuke Arai; Kota Ishioka; Keiko Ohgino; Shinnosuke Ikemura; Takashi Sato; Satoshi Yoda; Ryosuke Satomi; Katsuhiko Naoki; Tomoko Betsuyaku

Patients with non-small cell lung cancer (NSCLC) that harbors epidermal growth factor receptor (EGFR) mutations initially respond to EGFR-tyrosine kinase inhibitors (TKI) but eventually experience relapse. Acquired resistance to EGFR-TKIs is strongly associated with patient mortality. Thus, elucidation of the mechanism of acquired resistance to EGFR-TKIs is of great importance. In this study, gefitinib-resistant cell line models were established by long-term exposure to gefitinib using the gefitinib-sensitive lung cancer cell lines, PC9 and HCC827. Expression analyses indicated that both FGFR1 and FGF2 were increased in PC9 gefitinib-resistant (PC9 GR) cells as compared with PC9 naïve (PC9 na) cells. Importantly, proliferation of gefitinib-resistant cells was dependent on the FGF2 -FGFR1 pathway. Mechanistically, inhibition of either FGF2 or FGFR1 by siRNA or FGFR inhibitor (PD173074) restored gefitinib sensitivity in PC9 GR cells. These data suggest that FGF2 -FGFR1 activation through an autocrine loop is a novel mechanism of acquired resistance to EGFR-TKIs. Mol Cancer Res; 11(7); 759–67. ©2013 AACR.


Journal of Immunology | 2004

Inhibition of c-Jun NH2-Terminal Kinase Activity Improves Ischemia/Reperfusion Injury in Rat Lungs

Yukio Suzuki; Kei Takeshita; Naoki Miyao; Hiroyasu Kudo; Rika Hiraoka; Kazumi Nishio; Nagato Sato; Katsuhiko Naoki; Takuya Aoki; Kazuhiro Yamaguchi

Although c-Jun NH2-terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-κB-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4°C for 4 h followed by reperfusion at 37°C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-κB qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-α into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation.

Collaboration


Dive into the Katsuhiko Naoki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge