Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuhiko Shirahige is active.

Publication


Featured researches published by Katsuhiko Shirahige.


Nature | 2008

Cohesin mediates transcriptional insulation by CCCTC-binding factor

Kerstin S. Wendt; Keisuke Yoshida; Takehiko Itoh; Masashige Bando; Birgit Koch; Erika Schirghuber; Shuichi Tsutsumi; Genta Nagae; Ko Ishihara; Tsuyoshi Mishiro; Kazuhide Yahata; Fumio Imamoto; Hiroyuki Aburatani; Mitsuyoshi Nakao; Naoko Imamoto; Kazuhiro Maeshima; Katsuhiko Shirahige; Jan-Michael Peters

Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to ‘cohesinopathies’ such as Cornelia de Lange syndrome.


Nature | 2003

S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex

Yuki Katou; Yutaka Kanoh; Masashige Bando; Hideki Noguchi; Hirokazu Tanaka; Toshihiko Ashikari; Katsunori Sugimoto; Katsuhiko Shirahige

The checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome. This is particularly important in S phase of the cell cycle, when genomic DNA is most susceptible to various environmental hazards. When chemical agents damage DNA, activation of checkpoint signalling pathways results in a temporary cessation of DNA replication. A replication-pausing complex is believed to be created at the arrested forks to activate further checkpoint cascades, leading to repair of the damaged DNA. Thus, checkpoint factors are thought to act not only to arrest replication but also to maintain a stable replication complex at replication forks. However, the molecular mechanism coupling checkpoint regulation and replication arrest is unknown. Here we demonstrate that the checkpoint regulatory proteins Tof1 and Mrc1 interact directly with the DNA replication machinery in Saccharomyces cerevisiae. When hydroxyurea blocks chromosomal replication, this assembly forms a stable pausing structure that serves to anchor subsequent DNA repair events.


Nature | 2004

Cohesin relocation from sites of chromosomal loading to places of convergent transcription.

Armelle Lengronne; Yuki Katou; Saori Mori; Shihori Yokobayashi; Gavin Kelly; Takehiko Itoh; Yoshinori Watanabe; Katsuhiko Shirahige; Frank Uhlmann

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III–VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.


Nature | 1998

Regulation of DNA-replication origins during cell-cycle progression.

Katsuhiko Shirahige; Yuji Hori; Katsuya Shiraishi; Minoru Yamashita; Keiko Takahashi; Chikashi Obuse; Toshiki Tsurimoto; Hiroshi Yoshikawa

We have shown previously that chromosome VI of Saccharomyces cerevisiae contains nine origins of DNA replication that differ in initiation frequency and replicate sequentially during the S phase of the cell cycle,. Here we show that there are links between activation of these multiple origins and regulation of S-phase progression. We study the effects of a DNA-damaging agent, methyl methane sulphonate (MMS), and of mutations in checkpoint genes such as rad53 (ref. 3) on the activity of origins, measured by two-dimensional gel analysis, and on cell-cycle progression, measured by fluorescence-activated cell sorting. We find that when MMS slows down S-phase progression it also selectively blocks initiation from late origins. A rad53 mutation enhances late and/or inefficient origins and releases the initiation block by MMS. Mutation of rad53 also results in a late origin becoming early replicating. We conclude that rad53 regulates the timing of initiation of replication from late origins during normal cell growth and blocks initiation from late origins in MMS-treated cells. rad53 is, therefore, involved in the cells surveillance of S-phase progression,. We also find that orc2, which encodes subunit 2 of the origin-recognition complex,, is involved in suppression of late origins.


Nature | 2006

Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I

Christian G. Riedel; Vittorio L. Katis; Yuki Katou; Saori Mori; Takehiko Itoh; Wolfgang Helmhart; Marta Galova; Mark Petronczki; Juraj Gregan; Bulent Cetin; Ingrid Mudrak; Egon Ogris; Karl Mechtler; Laurence Pelletier; Frank Buchholz; Katsuhiko Shirahige; Kim Nasmyth

Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesins Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.


Nature | 2012

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle.

Matthew A. Deardorff; Masashige Bando; Ryuichiro Nakato; Erwan Watrin; Takehiko Itoh; Masashi Minamino; Katsuya Saitoh; Makiko Komata; Yuki Katou; Dinah Clark; Kathryn E. Cole; Elfride De Baere; Christophe Decroos; Nataliya Di Donato; Sarah Ernst; Lauren J. Francey; Yolanda Gyftodimou; Kyotaro Hirashima; Melanie Hullings; Yuuichi Ishikawa; Christian Jaulin; Maninder Kaur; Tohru Kiyono; Patrick M. Lombardi; Laura Magnaghi-Jaulin; Geert Mortier; Naohito Nozaki; Michael B. Petersen; Hiroyuki Seimiya; Victoria M. Siu

Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (∼5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.


Genes & Development | 2008

Identification of cis-acting sites for condensin loading onto budding yeast chromosomes

Claudio D'ambrosio; Christine K. Schmidt; Yuki Katou; Gavin Kelly; Takehiko Itoh; Katsuhiko Shirahige; Frank Uhlmann

Eukaryotic chromosomes reach their stable rod-shaped appearance in mitosis in a reaction dependent on the evolutionarily conserved condensin complex. Little is known about how and where condensin associates with chromosomes. Here, we analyze condensin binding to budding yeast chromosomes using high-resolution oligonucleotide tiling arrays. Condensin-binding sites coincide with those of the loading factor Scc2/4 of the related cohesin complex. The sites map to tRNA and other genes bound by the RNA polymerase III transcription factor TFIIIC, and ribosomal protein and SNR genes. An ectopic B-box element, recognized by TFIIIC, constitutes a minimal condensin-binding site, and TFIIIC and the Scc2/4 complex promote functional condensin association with chromosomes. A similar pattern of condensin binding is conserved along fission yeast chromosomes. This reveals that TFIIIC-binding sites, including tRNA genes, constitute a hitherto unknown chromosomal feature with important implications for chromosome architecture during both interphase and mitosis.


Cell | 2006

Evidence that Loading of Cohesin Onto Chromosomes Involves Opening of Its SMC Hinge

Stephan Gruber; Prakash Arumugam; Yuki Katou; Daria Kuglitsch; Wolfgang Helmhart; Katsuhiko Shirahige; Kim Nasmyth

Cohesin is a multisubunit complex that mediates sister-chromatid cohesion. Its Smc1 and Smc3 subunits possess ABC-like ATPases at one end of 50 nm long coiled coils. At the other ends are pseudosymmetrical hinge domains that interact to create V-shaped Smc1/Smc3 heterodimers. N- and C-terminal domains within cohesins kleisin subunit Scc1 bind to Smc3 and Smc1 ATPase heads respectively, thereby creating a huge tripartite ring. It has been suggested that cohesin associates with chromosomes by trapping DNA within its ring. Opening of the ring due to cleavage of Scc1 by separase destroys sister-chromatid cohesion and triggers anaphase. We show that cohesins hinges are not merely dimerization domains. They are essential for cohesins association with chromosomes, which is blocked by artificially holding hinge domains together but not by preventing Scc1s dissociation from SMC ATPase heads. Our results suggest that entry of DNA into cohesins ring requires transient dissociation of Smc1 and Smc3 hinge domains.


Cell | 2010

Sororin Mediates Sister Chromatid Cohesion by Antagonizing Wapl

Tomoko Nishiyama; Rene Ladurner; Julia Schmitz; Emanuel Kreidl; Alexander Schleiffer; Venugopal Bhaskara; Masashige Bando; Katsuhiko Shirahige; Anthony A. Hyman; Karl Mechtler; Jan-Michael Peters

Sister chromatid cohesion is essential for chromosome segregation and is mediated by cohesin bound to DNA. Cohesin-DNA interactions can be reversed by the cohesion-associated protein Wapl, whereas a stably DNA-bound form of cohesin is thought to mediate cohesion. In vertebrates, Sororin is essential for cohesion and stable cohesin-DNA interactions, but how Sororin performs these functions is unknown. We show that DNA replication and cohesin acetylation promote binding of Sororin to cohesin, and that Sororin displaces Wapl from its binding partner Pds5. In the absence of Wapl, Sororin becomes dispensable for cohesion. We propose that Sororin maintains cohesion by inhibiting Wapls ability to dissociate cohesin from DNA. Sororin has only been identified in vertebrates, but we show that many invertebrate species contain Sororin-related proteins, and that one of these, Dalmatian, is essential for cohesion in Drosophila. The mechanism we describe here may therefore be widely conserved among different species.


The EMBO Journal | 2009

Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster

Tsuyoshi Mishiro; Ko Ishihara; Shinjiro Hino; Shuichi Tsutsumi; Hiroyuki Aburatani; Katsuhiko Shirahige; Yoshikazu Kinoshita; Mitsuyoshi Nakao

Long‐range regulatory elements and higher‐order chromatin structure coordinate the expression of multiple genes in cluster, and CTCF/cohesin‐mediated chromatin insulator may be a key in this regulation. The human apolipoprotein (APO) A1/C3/A4/A5 gene region, whose alterations increase the risk of dyslipidemia and atherosclerosis, is partitioned at least by three CTCF‐enriched sites and three cohesin protein RAD21‐enriched sites (two overlap with the CTCF sites), resulting in the formation of two transcribed chromatin loops by interactions between insulators. The C3 enhancer and APOC3/A4/A5 promoters reside in the same loop, where the APOC3/A4 promoters are pointed towards the C3 enhancer, whereas the APOA1 promoter is present in the different loop. The depletion of either CTCF or RAD21 disrupts the chromatin loop structure, together with significant changes in the APO expression and the localization of transcription factor hepatocyte nuclear factor (HNF)‐4α and transcriptionally active form of RNA polymerase II at the APO promoters. Thus, CTCF/cohesin‐mediated insulators maintain the chromatin loop formation and the localization of transcriptional apparatus at the promoters, suggesting an essential role of chromatin insulation in controlling the expression of clustered genes.

Collaboration


Dive into the Katsuhiko Shirahige's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takehiko Itoh

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Yoshikawa

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge