Katsuhiro Hanada
Oita University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuhiro Hanada.
Circulation Research | 2007
Katsuhiro Hanada; Marcel Vermeij; George A. Garinis; Monique C. de Waard; Maurice Kunen; Loretha Myers; Alex Maas; Dirk J. Duncker; Carel Meijers; Harry C. Dietz; Roland Kanaar; Jeroen Essers
The Fibulins are a 6-member protein family hypothesized to function as intermolecular bridges that stabilize the organization of extracellular matrix structures. Here, we show that reduced expression of Fibulin-4 leads to aneurysm formation, dissection of the aortic wall and cardiac abnormalities. Fibulin-4 knockdown mice with a hypomorphic expression allele arose from targeted disruption of the adjacent Mus81 endonuclease gene. Mice homozygous for the Fibulin-4 reduced expression allele (Fibulin-4R/R) show dilatation of the ascending aorta and a tortuous and stiffened aorta, resulting from disorganized elastic fiber networks. They display thickened aortic valvular leaflets that are associated with aortic valve stenosis and insufficiency. Strikingly, already a modest reduction in expression of Fibulin-4 in the heterozygous Fibulin-4+/R mice occasionally resulted in small aneurysm formation. To get insight into the underlying molecular pathways involved in aneurysm formation and response to aortic failure, we determined the aorta transcriptome of Fibulin-4+/R and Fibulin-4R/R animals and identified distinct and overlapping biological processes that were significantly overrepresented including cytoskeleton organization, cell adhesion, apoptosis and several novel gene targets. Transcriptome and protein expression analysis implicated perturbation of TGF-&bgr; signaling in the pathogenesis of aneurysm in fibulin-4 deficient mice. Our results show that the dosage of a single gene can determine the severity of aneurysm formation and imply that disturbed TGF-&bgr; signaling underlies multiple aneurysm phenotypes.
Molecular and Cellular Biology | 2009
Nikhil R. Bhagwat; Anna Olsen; Anderson T. Wang; Katsuhiro Hanada; Patricia Stuckert; Roland Kanaar; Alan D. D'Andrea; Laura J. Niedernhofer; Peter J. McHugh
ABSTRACT Interstrand cross-links (ICLs) prevent DNA strand separation and, therefore, transcription and replication, making them extremely cytotoxic. The precise mechanism by which ICLs are removed from mammalian genomes largely remains elusive. Genetic evidence implicates ATR, the Fanconi anemia proteins, proteins required for homologous recombination, translesion synthesis, and at least two endonucleases, MUS81-EME1 and XPF-ERCC1. ICLs cause replication-dependent DNA double-strand breaks (DSBs), and MUS81-EME1 facilitates DSB formation. The subsequent repair of these DSBs occurs via homologous recombination after the ICL is unhooked by XPF-ERCC1. Here, we examined the effect of the loss of either nuclease on FANCD2 monoubiquitination to determine if the nucleolytic processing of ICLs is required for the activation of the Fanconi anemia pathway. FANCD2 was monoubiquitinated in Mus81−/−, Ercc1−/−, and XPF-deficient human, mouse, and hamster cells exposed to cross-linking agents. However, the monoubiquitinated form of FANCD2 persisted longer in XPF-ERCC1-deficient cells than in wild-type cells. Moreover, the levels of chromatin-bound FANCD2 were dramatically reduced and the number of ICL-induced FANCD2 foci significantly lower in XPF-ERCC1-deficient cells. These data demonstrate that the unhooking of an ICL by XPF-ERCC1 is necessary for the stable localization of FANCD2 to the chromatin and subsequent homologous recombination-mediated DSB repair.
Cellular and Molecular Life Sciences | 2007
Katsuhiro Hanada; I. D. Hickson
Abstract.The RecQ helicases belong to the Superfamily II group of DNA helicases, and are defined by amino acid motifs that show sequence similarity to the catalytic domain of Escherichia coli RecQ. RecQ helicases have crucial roles in the maintenance of genome stability. In humans, there are five RecQ helicases and deficiencies in three of them cause genetic disorders characterised by cancer predisposition, premature aging and/or developmental abnormalities. RecQ helicase-deficient cells exhibit aberrant genetic recombination and/or DNA replication, which result in chromosomal instability and a decreased potential for proliferation. Here, we review the current knowledge of the molecular genetics of RecQ helicases, focusing on the human RecQ helicase disorders and mouse models of these conditions.
Nature Communications | 2013
Kasper Fugger; Wai Kit Chu; Peter Haahr; Arne Nedergaard Kousholt; Halfdan Beck; Miranda Payne; Katsuhiro Hanada; Ian D. Hickson; Claus Storgaard Sørensen
The molecular events occurring following the disruption of DNA replication forks are poorly characterized, despite extensive use of replication inhibitors such as hydroxyurea in the treatment of malignancies. Here, we identify a key role for the FBH1 helicase in mediating DNA double-strand break formation following replication inhibition. We show that FBH1-deficient cells are resistant to killing by hydroxyurea, and exhibit impaired activation of the pro-apoptotic factor p53, consistent with decreased DNA double-strand break formation. Similar findings were obtained in murine ES cells carrying disrupted alleles of Fbh1. We also show that FBH1 through its helicase activity co-operates with the MUS81 nuclease in promoting the endonucleolytic DNA cleavage following prolonged replication stress. Accordingly, MUS81 and EME1-depleted cells show increased resistance to the cytotoxic effects of replication stress. Our data suggest that FBH1 helicase activity is required to eliminate cells with excessive replication stress through the generation of MUS81-induced DNA double-strand breaks.
Gut Pathogens | 2010
Seiji Shiota; Osamu Matsunari; Masahide Watada; Katsuhiro Hanada; Yoshio Yamaoka
BackgroundIn 2005, the first disease-specific Helicobacter pylori virulence factor that induced duodenal ulcer and had a suppressive action on gastric cancer has been identified, and was named duodenal ulcer promoting gene (dupA). However, the importance of the dupA gene on clinical outcomes is conflicting in subsequent studies. The aim of this study was to estimate the magnitude of the risk for clinical outcomes associated with dupA gene.MethodsA meta-analysis of case-control studies which provided raw data on the infection rates with the dupA-positive H. pylori detected by polymerase chain reaction was performed.ResultsSeventeen studies with a total of 2,466 patients were identified in the search. Infection with the dupA-positive H. pylori increased the risk for duodenal ulcer by 1.41-fold (95% confidence interval [CI], 1.12-1.76) overall. Subgroup analysis showed that the summary odds ratio (OR) was 1.57 (95% CI, 1.19-2.06) in Asian countries and 1.09 (95% CI, 0.73-1.62) in Western countries. There was no association between the presence of the dupA gene and gastric cancer and gastric ulcer. Publication bias did not exist.ConclusionOur meta-analysis confirmed the importance of the presence of the dupA gene for duodenal ulcer, especially in Asian countries.
Journal of Biological Chemistry | 2013
Jitka Simandlova; Jennifer Zagelbaum; Miranda Payne; Wai Kit Chu; Igor Shevelev; Katsuhiro Hanada; Sujoy Chatterjee; Dylan A. Reid; Ying Liu; Pavel Janscak; Eli Rothenberg; Ian D. Hickson
Background: Homologous recombination is regulated both positively and negatively in eukaryotic cells to suppress genomic instability. Results: FBH1 can disrupt RAD51 filaments in vitro and suppresses formation of spontaneous RAD51 foci in mammalian cells. In cells defective for FBH1, hyper-recombination is observed. Conclusion: FBH1 is a negative regulator of homologous recombination. Significance: RAD51 activity must be carefully controlled to preserve genomic integrity. Efficient repair of DNA double strand breaks and interstrand cross-links requires the homologous recombination (HR) pathway, a potentially error-free process that utilizes a homologous sequence as a repair template. A key player in HR is RAD51, the eukaryotic ortholog of bacterial RecA protein. RAD51 can polymerize on DNA to form a nucleoprotein filament that facilitates both the search for the homologous DNA sequences and the subsequent DNA strand invasion required to initiate HR. Because of its pivotal role in HR, RAD51 is subject to numerous positive and negative regulatory influences. Using a combination of molecular genetic, biochemical, and single-molecule biophysical techniques, we provide mechanistic insight into the mode of action of the FBH1 helicase as a regulator of RAD51-dependent HR in mammalian cells. We show that FBH1 binds directly to RAD51 and is able to disrupt RAD51 filaments on DNA through its ssDNA translocase function. Consistent with this, a mutant mouse embryonic stem cell line with a deletion in the FBH1 helicase domain fails to limit RAD51 chromatin association and shows hyper-recombination. Our data are consistent with FBH1 restraining RAD51 DNA binding under unperturbed growth conditions to prevent unwanted or unscheduled DNA recombination.
Oncogene | 2010
Wai Kit Chu; Katsuhiro Hanada; Roland Kanaar; Ian D. Hickson
BLM is a RecQ family helicase that is defective in individuals with the cancer predisposition disorder, Blooms syndrome (BS). At the cellular level, BS is characterized by hyper-recombination manifested as excessive sister chromatid exchange and loss of heterozygosity. However, the precise function of BLM remains unclear. Multiple roles have been proposed for BLM in the homologous recombination (HR) repair pathway, including ‘early’ functions, such as the stimulation of resection of DNA double-strand break ends or displacement of the invading strand of DNA displacement loops, and ‘late’ roles, such as dissolution of double Holliday junctions. However, most of the evidence for these putative roles comes from in vitro biochemical data. In this study, we report the characterization of mouse embryonic stem cells with disruption of Blm and/or Rad54 genes. We show that Blm has roles both upstream and downstream of the Rad54 protein, a core HR factor. Disruption of Rad54 in the Blm-mutant background reduced the elevated level of gene targeting and of sister chromatid exchanges, implying that Blm primarily functions downstream of Rad54 in the HR pathway. Conversely, however, mutation of Blm in Rad54−/− cells rescued their mitomycin C (MMC) sensitivity, and decreased both the level of DNA damage and cell cycle perturbation induced by MMC, suggesting an early role for Blm. Our data are consistent with Blm having at least two roles in HR repair in mammalian cells.
Infection and Immunity | 2014
Katsuhiro Hanada; Tomohisa Uchida; Yoshiyuki Tsukamoto; Masahide Watada; Nahomi Yamaguchi; Kaoru Yamamoto; Seiji Shiota; Masatsugu Moriyama; David Y. Graham; Yoshio Yamaoka
ABSTRACT Gastric cancer is an inflammation-related malignancy related to long-standing acute and chronic inflammation caused by infection with the human bacterial pathogen Helicobacter pylori. Inflammation can result in genomic instability. However, there are considerable data that H. pylori itself can also produce genomic instability both directly and through epigenetic pathways. Overall, the mechanisms of H. pylori-induced host genomic instabilities remain poorly understood. We used microarray screening of H. pylori-infected human gastric biopsy specimens to identify candidate genes involved in H. pylori-induced host genomic instabilities. We found upregulation of ATM expression in vivo in gastric mucosal cells infected with H. pylori. Using gastric cancer cell lines, we confirmed that the H. pylori-related activation of ATM was due to the accumulation of DNA double-strand breaks (DSBs). DSBs were observed following infection with both cag pathogenicity island (PAI)-positive and -negative strains, but the effect was more robust with cag PAI-positive strains. These results are consistent with the fact that infections with both cag PAI-positive and -negative strains are associated with gastric carcinogenesis, but the risk is higher in individuals infected with cag PAI-positive strains.
Expert Review of Anticancer Therapy | 2014
Katsuhiro Hanada; David Y. Graham
Gastric carcinoma is an inflammation-related cancer caused by long-term infection with the human bacterial pathogen, Helicobacter pylori. The pattern of acute-on-chronic inflammation causes progressive mucosal damage which may result in atrophy with metaplastic epithelia and eventually gastric cancer. Recently, it has been recognized that H. pylori can also cause genetic instability such as double-stranded DNA breaks and can produce gene activation and silencing via epigenetic pathways. As genetic instability is the hallmark of cancer, we highlight recent progress in understanding the gastric carcinogenesis in relation to H. pylori-related inflammation, H. pylori-induced double-stranded DNA breakage and aberrant gene expression as well as the mechanisms and role of H. pylori-associated epigenetic change in gene expression.
Genes and Environment | 2016
Satoru Hashimoto; Hirofumi Anai; Katsuhiro Hanada
Interstrand DNA crosslinks (ICLs) are the link between Watson-Crick strands of DNAs with the covalent bond and prevent separation of DNA strands. Since the ICL lesion affects both strands of the DNA, the ICL repair is not simple. So far, nucleotide excision repair (NER), structure-specific endonucleases, translesion DNA synthesis (TLS), homologous recombination (HR), and factors responsible for Fanconi anemia (FA) are identified to be involved in ICL repair. Since the presence of ICL lesions causes severe defects in transcription and DNA replication, mutations in these DNA repair pathways give rise to a various hereditary disorders. NER plays an important role for the ICL recognition and removal in quiescent cells, and defects of NER causes congential progeria syndrome, such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. On the other hand, the ICL repair in S phase requires more complicated orchestration of multiple factors, including structure-specific endonucleases, and TLS, and HR. Disturbed this ICL repair orchestration in S phase causes genome instability resulting a cancer prone disease, Fanconi anemia. So far more than 30 factors in ICL repair have already identified. Recently, a new factor, UHRF1, was discovered as a sensor of ICLs. In addition to this, numbers of nucleases that are involved in the first incision, also called unhooking, of ICL lesions have also been identified. Here we summarize the recent studies of ICL associated disorders and repair mechanism, with emphasis in the first incision of ICLs.