Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsumasa Irie is active.

Publication


Featured researches published by Katsumasa Irie.


Science | 2015

Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin

Yasunori Saitoh; Hiroshi Suzuki; Kazutoshi Tani; Kouki Nishikawa; Katsumasa Irie; Yuki Ogura; Atsushi Tamura; Sachiko Tsukita; Yoshinori Fujiyoshi

How a toxin makes epithelial sheets leaky The entire human body and its many compartments are shielded from their external environments by the barrier function of epithelial cell sheets. The paracellular barrier function of tight junctions (TJs) is critical for maintaining homeostasis in any multicellular organism, especially in the skin and internal organs and at the blood-brain barrier. One of the major components of TJs is a family of adhesive membrane proteins known as claudins. Several members of the claudin family are receptors for the bacterial toxin Clostridium perfringens enterotoxin. This toxin often causes food-borne illness both in humans and animals. Saitoh et al. crystallized a complex between the toxin and a claudin that reveals just how the toxin damages epithelial barriers (see the Perspective by Artursson and Knight). Science, this issue p. 775; see also p. 716 A bacterial toxin renders the extracellular claudin domain conformationally incompatible with tight junction formation. [Also see Perspective by Artursson and Knight] The C-terminal region of Clostridium perfringens enterotoxin (C-CPE) can bind to specific claudins, resulting in the disintegration of tight junctions (TJs) and an increase in the paracellular permeability across epithelial cell sheets. Here we present the structure of mammalian claudin-19 in complex with C-CPE at 3.7 Å resolution. The structure shows that C-CPE forms extensive hydrophobic and hydrophilic interactions with the two extracellular segments of claudin-19. The claudin-19/C-CPE complex shows no density of a short extracellular helix that is critical for claudins to assemble into TJ strands. The helix displacement may thus underlie C-CPE–mediated disassembly of TJs.


Journal of Biological Chemistry | 2010

Comparative Study of the Gating Motif and C-type Inactivation in Prokaryotic Voltage-gated Sodium Channels

Katsumasa Irie; Kazuya Kitagawa; Hitoshi Nagura; Tomoya Imai; Takushi Shimomura; Yoshinori Fujiyoshi

Prokaryotic voltage-gated sodium channels (NaVs) are homotetramers and are thought to inactivate through a single mechanism, named C-type inactivation. Here we report the voltage dependence and inactivation rate of the NaChBac channel from Bacillus halodurans, the first identified prokaryotic NaV, as well as of three new homologues cloned from Bacillus licheniformis (NaVBacL), Shewanella putrefaciens (NaVSheP), and Roseobacter denitrificans (NaVRosD). We found that, although activated by a lower membrane potential, NaVBacL inactivates as slowly as NaChBac. NaVSheP and NaVRosD inactivate faster than NaChBac. Mutational analysis of helix S6 showed that residues corresponding to the “glycine hinge” and “PXP motif” in voltage-gated potassium channels are not obligatory for channel gating in these prokaryotic NaVs, but mutations in the regions changed the inactivation rates. Mutation of the region corresponding to the glycine hinge in NaVBacL (A214G), NaVSheP (A216G), and NaChBac (G219A) accelerated inactivation in these channels, whereas mutation of glycine to alanine in the lower part of helix S6 in NaChBac (G229A), NaVBacL (G224A), and NaVRosD (G217A) reduced the inactivation rate. These results imply that activation gating in prokaryotic NaVs does not require gating motifs and that the residues of helix S6 affect C-type inactivation rates in these channels.


Journal of Molecular Biology | 2013

Two Alternative Conformations of a Voltage-Gated Sodium Channel.

Ching-Ju Tsai; Kazutoshi Tani; Katsumasa Irie; Yoko Hiroaki; Takushi Shimomura; Duncan G. G. McMillan; Gregory M. Cook; Gebhard F. X. Schertler; Yoshinori Fujiyoshi; Xiao-Dan Li

Activation and inactivation of voltage-gated sodium channels (Navs) are well studied, yet the molecular mechanisms governing channel gating in the membrane remain unknown. We present two conformations of a Nav from Caldalkalibacillus thermarum reconstituted into lipid bilayers in one crystal at 9Å resolution based on electron crystallography. Despite a voltage sensor arrangement identical with that in the activated form, we observed two distinct pore domain structures: a prominent form with a relatively open inner gate and a closed inner-gate conformation similar to the first prokaryotic Nav structure. Structural differences, together with mutational and electrophysiological analyses, indicated that widening of the inner gate was dependent on interactions among the S4-S5 linker, the N-terminal part of S5 and its adjoining part in S6, and on interhelical repulsion by a negatively charged C-terminal region subsequent to S6. Our findings suggest that these specific interactions result in two conformational structures.


Journal of Molecular Biology | 2002

Crystal structure of the Homer 1 family conserved region reveals the interaction between the EVH1 domain and own proline-rich motif.

Katsumasa Irie; Toru Nakatsu; Kaoru Mitsuoka; Atsuo Miyazawa; Kenji Sobue; Yoko Hiroaki; Tomoko Doi; Yoshinori Fujiyoshi; Hiroaki Kato

PSD-Zip45 (also named Homer 1c/Vesl-1L) is a synaptic scaffolding protein, which interacts with neurotransmitter receptors and other scaffolding proteins to target them into post-synaptic density (PSD), a specialized protein complex at the synaptic junction. Binding of the PSD-Zip45 to the receptors and scaffolding proteins results in colocalization and clustering of its binding partners in PSD. It has an Ena/VASP homology 1 (EVH1) domain in the N terminus for receptor binding, two leucine zipper motifs in the C terminus for clustering, and a linking region whose function is unclear despite the high level of conservation within the Homer 1 family. The X-ray crystallographic analysis of the largest fragment of residues 1-163, including an EVH1 domain reported here, demonstrates that the EVH1 domain contains an alpha-helix longer than that of the previous models, and that the linking part included in the conserved region of Homer 1 (CRH1) of the PSD-Zip45 interacts with the EVH1 domain of the neighbour CRH1 molecule in the crystal. The results suggest that the EVH1 domain recognizes the PPXXF motif found in the binding partners, and the SPLTP sequence (P-motif) in the linking region of the CRH1. The two types of binding are partly overlapped in the EVH1 domain, implying a mechanism to regulate multimerization of Homer 1 family proteins.


Cerebral Cortex | 2016

Control of Spontaneous Ca2+ Transients Is Critical for Neuronal Maturation in the Developing Neocortex

Yuki Bando; Katsumasa Irie; Takushi Shimomura; Hiroki Umeshima; Yuki Kushida; Mineko Kengaku; Yoshinori Fujiyoshi; Tomoo Hirano; Yoshiaki Tagawa

Neural activity plays roles in the later stages of development of cortical excitatory neurons, including dendritic and axonal arborization, remodeling, and synaptogenesis. However, its role in earlier stages, such as migration and dendritogenesis, is less clear. Here we investigated roles of neural activity in the maturation of cortical neurons, using calcium imaging and expression of prokaryotic voltage-gated sodium channel, NaChBac. Calcium imaging experiments showed that postmigratory neurons in layer II/III exhibited more frequent spontaneous calcium transients than migrating neurons. To test whether such an increase of neural activity may promote neuronal maturation, we elevated the activity of migrating neurons by NaChBac expression. Elevation of neural activity impeded migration, and induced premature branching of the leading process before neurons arrived at layer II/III. Many NaChBac-expressing neurons in deep cortical layers were not attached to radial glial fibers, suggesting that these neurons had stopped migration. Morphological and immunohistochemical analyses suggested that branched leading processes of NaChBac-expressing neurons differentiated into dendrites. Our results suggest that developmental control of spontaneous calcium transients is critical for maturation of cortical excitatory neurons in vivo: keeping cellular excitability low is important for migration, and increasing spontaneous neural activity may stop migration and promote dendrite formation.


Nature Communications | 2012

The C-terminal helical bundle of the tetrameric prokaryotic sodium channel accelerates the inactivation rate

Katsumasa Irie; Takushi Shimomura; Yoshinori Fujiyoshi

Most tetrameric channels have cytosolic domains to regulate their functions, including channel inactivation. Here we show that the cytosolic C-terminal region of NavSulP, a prokaryotic voltage-gated sodium channel cloned from Sulfitobacter pontiacus, accelerates channel inactivation. The crystal structure of the C-terminal region of NavSulP grafted into the C-terminus of a NaK channel revealed that the NavSulP C-terminal region forms a four-helix bundle. Point mutations of the residues involved in the intersubunit interactions of the four-helix bundle destabilized the tetramer of the channel and reduced the inactivation rate. The four-helix bundle was directly connected to the inner helix of the pore domain, and a mutation increasing the rigidity of the inner helix also reduced the inactivation rate. These findings suggest that the NavSulP four-helix bundle has important roles not only in stabilizing the tetramer, but also in accelerating the inactivation rate, through promotion of the conformational change of the inner helix.


Journal of Biological Chemistry | 2011

Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels

Takushi Shimomura; Katsumasa Irie; Hitoshi Nagura; Tomoya Imai; Yoshinori Fujiyoshi

Prokaryotic voltage-gated sodium channels (NaVs) form homotetramers with each subunit contributing six transmembrane α-helices (S1–S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (KVs), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on NaVs remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic NaV, is similar to that in KVs. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic NaVs are similar to those in canonical KVs.


Nature | 2018

Crystal structures of the gastric proton pump

Kazuhiro Abe; Katsumasa Irie; Hanayo Nakanishi; Hiroshi Suzuki; Yoshinori Fujiyoshi

The gastric proton pump—the H+, K+-ATPase—is a P-type ATPase responsible for acidifying the gastric juice down to pH 1. This corresponds to a million-fold proton gradient across the membrane of the parietal cell, the steepest known cation gradient of any mammalian tissue. The H+, K+-ATPase is an important target for drugs that treat gastric acid-related diseases. Here we present crystal structures of the H+, K+-ATPase in complex with two blockers, vonoprazan and SCH28080, in the luminal-open state, at 2.8 Å resolution. The drugs have partially overlapping but clearly distinct binding modes in the middle of a conduit running from the gastric lumen to the cation-binding site. The crystal structures suggest that the tight configuration at the cation-binding site lowers the pKa value of Glu820 sufficiently to enable the release of a proton even into the pH 1 environment of the stomach.Crystal structures of the gastric proton pump in complex with two inhibitory drugs reveal the mechanism that generates the steep acidic gradient across the membranes of parietal cells.


Biochemical and Biophysical Research Communications | 2010

Evidence for lateral mobility of voltage sensors in prokaryotic voltage-gated sodium channels

Hitoshi Nagura; Katsumasa Irie; Tomoya Imai; Takushi Shimomura; Toshihide Hige; Yoshinori Fujiyoshi

Voltage-sensor domains (VSDs) in voltage-gated ion channels are thought to regulate the probability that a channel adopts an open conformation by moving vertically in the lipid bilayer. Here we characterized the movement of the VSDs of the prokaryotic voltage-gated sodium channel, NaChBac. Substitution of residue T110, which is located on the extracellular side of the fourth transmembrane helix of the VSD, by cysteine resulted in the formation of a disulfide bond between adjacent subunits in the channel. Our results suggest that T110 residues in VSDs of adjacent subunits can come into close proximity, implying that the VSDs can move laterally in the membrane and constitute a mechanism that regulates channel activity.


FEBS Letters | 2018

Optimized expression and purification of NavAb provide the structural insight into the voltage dependence

Katsumasa Irie; Yukari Haga; Takushi Shimomura; Yoshinori Fujiyoshi

Voltage‐gated sodium channels are crucial for electro‐signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high‐resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well‐established standard of prokaryotic voltage‐gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high‐resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild‐type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage‐gated sodium channels.

Collaboration


Dive into the Katsumasa Irie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihide Hige

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiao-Dan Li

Paul Scherrer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge