Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuo Furukubo-Tokunaga is active.

Publication


Featured researches published by Katsuo Furukubo-Tokunaga.


Development Genes and Evolution | 1997

Early development of the Drosophila mushroom bodies, brain centres for associative learning and memory.

Marco Tettamanti; J. Douglas Armstrong; Keita Endo; Ming Yao Yang; Katsuo Furukubo-Tokunaga; Kim Kaiser; Heinrich Reichert

Abstract We have studied the formation of Drosophila mushroom bodies using enhancer detector techniques to visualize specific components of these complex intrinsic brain structures. During embryogenesis, neuronal proliferation begins in four mushroom body neuroblasts and the major axonal pathways of the mushroom bodies are pioneered. During larval development, neuronal proliferation continues and further axonal projections in the pedunculus and lobes are formed in a highly structured manner characterized by spatial heterogeneity of reporter gene expression. Enhancer detector analysis identifies many genomic locations that are specifically activated in mushroom body intrinsic neurons (Kenyon cells) during the transition from embryonic to postembryonic development and during metamorphosis.


Genes & Development | 2008

UNC-51/ATG1 kinase regulates axonal transport by mediating motor–cargo assembly

Hirofumi Toda; Hiroaki Mochizuki; Rafael Flores; Rebecca Josowitz; Tatiana B. Krasieva; Vickie J. LaMorte; Emiko Suzuki; Joseph Gindhart; Katsuo Furukubo-Tokunaga; Toshifumi Tomoda

Axonal transport mediated by microtubule-dependent motors is vital for neuronal function and viability. Selective sets of cargoes, including macromolecules and organelles, are transported long range along axons to specific destinations. Despite intensive studies focusing on the motor machinery, the regulatory mechanisms that control motor-cargo assembly are not well understood. Here we show that UNC-51/ATG1 kinase regulates the interaction between synaptic vesicles and motor complexes during transport in Drosophila. UNC-51 binds UNC-76, a kinesin heavy chain (KHC) adaptor protein. Loss of unc-51 or unc-76 leads to severe axonal transport defects in which synaptic vesicles are segregated from the motor complexes and accumulate along axons. Genetic studies show that unc-51 and unc-76 functionally interact in vivo to regulate axonal transport. UNC-51 phosphorylates UNC-76 on Ser(143), and the phosphorylated UNC-76 binds Synaptotagmin-1, a synaptic vesicle protein, suggesting that motor-cargo interactions are regulated in a phosphorylation-dependent manner. In addition, defective axonal transport in unc-76 mutants is rescued by a phospho-mimetic UNC-76, but not a phospho-defective UNC-76, demonstrating the essential role of UNC-76 Ser(143) phosphorylation in axonal transport. Thus, our data provide insight into axonal transport regulation that depends on the phosphorylation of adaptor proteins.


The Journal of Neuroscience | 2009

Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae.

Ken Honjo; Katsuo Furukubo-Tokunaga

Associative strength between conditioned stimulus (CS) and unconditioned stimulus (US) is thought to determine learning efficacy in classical conditioning. Elucidation of the neuronal mechanism that underlies the association between CS and US in the brain is thus critical to understand the principle of memory formation. With a simple brain organization, the Drosophila larva provides an attractive model system to investigate learning at the neurocircuitry level. Previously, we described a single-odor paradigm for larval associative learning using sucrose as a reward, and showed that larval appetitive memory lasts longer than 2 h. In this work, we describe behavioral and genetic characterization of larval aversive olfactory memory formed in our paradigm, and compare its stability and neurocircuitry with those of appetitive memory. Despite identical training paradigms, larval olfactory memory formed with quinine or NaCl is short-lived to be lost in 20 min. As with appetitive memory, larval aversive memory produced in this paradigm depends on intact cAMP signaling, but neither mutation of amnesiac nor suppression of CREB activity affects its kinetics. Neurocircuitry analyses suggest that aversive memory is stored before the presynaptic termini of the larval mushroom body neurons as is the case with appetitive memory. However, synaptic output of octopaminergic and dopaminergic neurons, which exhibit distinctive innervation patterns on the larval mushroom body and antennal lobe, is differentially required for the acquisition of appetitive and aversive memory, respectively. These results as a whole suggest that the genetically programmed memory circuitries might provide predisposition in the efficacy of inducing longer-lived memory components in associative learning.


Molecular Psychiatry | 2008

Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly

Naoya Sawamura; Tetsuya Ando; Yasushi Maruyama; Masahiro Fujimuro; Hiroaki Mochizuki; Ken Honjo; Masami Shimoda; Hirofumi Toda; Takako Sawamura-Yamamoto; Lauren A Makuch; Akiko Hayashi; Koko Ishizuka; Nicola G. Cascella; Atsushi Kamiya; Norio Ishida; Toshifumi Tomoda; Tsonwin Hai; Katsuo Furukubo-Tokunaga; Akira Sawa

Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription.


The Journal of Neuroscience | 2009

Unc-51 Controls Active Zone Density and Protein Composition by Downregulating ERK Signaling

Yogesh P. Wairkar; Hirofumi Toda; Hiroaki Mochizuki; Katsuo Furukubo-Tokunaga; Toshifumi Tomoda; Aaron DiAntonio

Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.


The Journal of Neuroscience | 2005

Induction of cAMP Response Element-Binding Protein-Dependent Medium-Term Memory by Appetitive Gustatory Reinforcement in Drosophila Larvae

Ken Honjo; Katsuo Furukubo-Tokunaga

The fruit fly Drosophila melanogaster has been successfully used as a model animal for the study of the genetic and molecular mechanisms of learning and memory. Although most of the Drosophila learning studies have used the adult fly, the relative complexity of its neural network hinders cellular and molecular studies at high resolution. In contrast, the Drosophila larva has a simple brain with uniquely identifiable neural networks, providing an opportunity of an attractive alternative system for elucidation of underlying mechanisms involved in learning and memory. In this paper, we describe a novel paradigm of larval associative learning with a single odor and a positive gustatory reinforcer, sucrose. Mutant analyses have suggested importance of cAMP signaling and potassium channel activities in larval learning as has been demonstrated with the adult fly. Intriguingly, larval memory produced by the appetitive conditioning lasts medium term and depends on both amnesiac and cAMP response element-binding protein (CREB). A significant part of memory was disrupted at very early phase by CREB blockade without affecting immediate learning performance. Moreover, we also show that synaptic output of larval mushroom body neurons is required for retrieval but not for acquisition and retention of the larval memory, including the CREB-dependent component.


Developmental Biology | 2009

A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain

Mitsuhiko Kurusu; Yasushi Maruyama; Yoshitsugu Adachi; Masataka Okabe; Emiko Suzuki; Katsuo Furukubo-Tokunaga

The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.


PLOS ONE | 2011

Unc-51/ATG1 Controls Axonal and Dendritic Development via Kinesin-Mediated Vesicle Transport in the Drosophila Brain

Hiroaki Mochizuki; Hirofumi Toda; Mai Ando; Mitsuhiko Kurusu; Toshifumi Tomoda; Katsuo Furukubo-Tokunaga

Background Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport. Methodology/Principal Findings In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations. Conclusions/Significance Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Differential microarray analysis of Drosophila mushroom body transcripts using chemical ablation

Masatomo Kobayashi; Lydia Michaut; Ayako Ino; Ken Honjo; Taiki Nakajima; Yasushi Maruyama; Hiroaki Mochizuki; Mai Ando; Indrayani Ghangrekar; Kuniaki Takahashi; Kaoru Saigo; Ryu Ueda; Walter J. Gehring; Katsuo Furukubo-Tokunaga

Mushroom bodies (MBs) are the centers for olfactory associative learning and elementary cognitive functions in the Drosophila brain. As a way to systematically elucidate genes preferentially expressed in MBs, we have analyzed genome-wide alterations in transcript profiles associated with MB ablation by hydroxyurea. We selected 100 genes based on microarray data and examined their expression patterns in the brain by in situ hybridization. Seventy genes were found to be expressed in the posterodorsal cortex, which harbors the MB cell bodies. These genes encode proteins of diverse functions, including transcription, signaling, cell adhesion, channels, and transporters. Moreover, we have examined developmental functions of 40 of the microarray-identified genes by transgenic RNA interference; 8 genes were found to cause mild-to-strong MB defects when suppressed with a MB-Gal4 driver. These results provide important information not only on the repertoire of genes that control MB development but also on the repertoire of neural factors that may have important physiological functions in MB plasticity.


Development Genes and Evolution | 2000

Patterning defects in the primary axonal scaffolds caused by the mutations of the extradenticle and homothorax genes in the embryonic Drosophila brain

Tomoko Nagao; Keita Endo; Hiroshi Kawauchi; Uwe Walldorf; Katsuo Furukubo-Tokunaga

Abstract During early brain development in Drosophila a highly stereotyped pattern of axonal scaffolds evolves by precise pioneering and selective fasciculation of neural fibers in the newly formed brain neuromeres. Using an axonal marker, Fasciclin II, we show that the activities of the extradenticle(exd) and homothorax (hth) genes are essential to this axonal patterning in the embryonic brain. Both genes are expressed in the developing brain neurons, including many of the tract founder cluster cells. Consistent with their expression profiles, mutations of exd and hth strongly perturb the primary axonal scaffolds. Furthermore, we show that mutations of exd and hth result in profound patterning defects of the developing brain at the molecular level including stimulation of the orthodenticle gene and suppression of the empty spiracles and cervical homeotic genes. In addition, expression of a Drosophila Pax6 gene, eyeless, is significantly suppressed in the mutants except for the most anterior region. These results reveal that, in addition to their homeotic regulatory functions in trunk development, exd and hth have important roles in patterning the developing brain through coordinately regulating various nuclear regulatory genes, and imply molecular commonalities between the developmental mechanisms of the brain and trunk segments, which were conventionally considered to be largely independent.

Collaboration


Dive into the Katsuo Furukubo-Tokunaga's collaboration.

Top Co-Authors

Avatar

Ken Honjo

University of Tsukuba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiko Kurusu

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Toshifumi Tomoda

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mai Ando

University of Tsukuba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge