Katsutoshi Yayama
Kobe Gakuin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsutoshi Yayama.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Kazutake Tsujikawa; Katsutoshi Yayama; Tamon Hayashi; Hiroaki Matsushita; Taijiro Yamaguchi; Tomomi Shigeno; Yusuke Ogitani; Megumi Hirayama; Tetsuya Kato; So-ichiro Fukada; Shingo Takatori; Hiromu Kawasaki; Hiroshi Okamoto; Masahito Ikawa; Masaru Okabe; Hiroshi Yamamoto
Calcitonin gene-related peptide (CGRP) is thought to be a prominent neuropeptide in cardiovascular regulation and neuroimmune modulation. There are two isoforms of CGRP (αCGRP and βCGRP), and the main CGRP receptors are probably composed of a calcitonin receptor-like receptor (CLR) and a receptor activity-modifying protein (RAMP)1. However, the physiological functions of CGRP that are mediated through the CLR/RAMP1 receptors remain to be clarified. For an improved understanding of the functions, we generated mice deficient in RAMP1, a specific subunit of CGRP receptors, by a conditional gene-targeting technique. The RAMP1-deficient mice (RAMP1−/−) exhibited high blood pressure, with no changes in heart rate. αCGRP was found to have a potent vascular relaxant activity compared with βCGRP in the artery of the WT (RAMP1+/+) mice. The activities of both CGRP isoforms were remarkably suppressed in the arteries of the RAMP1−/− mice. The LPS-induced inflammatory responses of the RAMP1−/− mice revealed a transient and significant increase in the serum CGRP levels and high serum levels of proinflammatory cytokines compared with the RAMP1+/+ mice. αCGRP and βCGRP equally suppressed the production of TNF-α and IL-12 in bone marrow-derived dendritic cells stimulated with lipopolysaccharide. Their inhibitory effects were not observed in the bone marrow-derived dendritic cells of the RAMP1−/− mice. These results indicate that CGRP signaling through CLR/RAMP1 receptors plays a crucial role in the regulation of both blood pressure by vascular relaxation and proinflammatory cytokine production from dendritic cells.
Hypertension | 2006
Katsutoshi Yayama; Hiromi Hiyoshi; Daichi Imazu; Hiroshi Okamoto
Abdominal aortic banding in mice induces upregulation of angiotensin II (Ang II) type 2 (AT2) receptors in the pressure-overloaded thoracic aorta. To clarify mechanisms underlying the vascular AT2 receptor-dependent NO production, we measured aortic levels of endothelial NO synthase (eNOS), eNOS phosphorylated at Ser633 and Ser1177, protein kinase B (Akt), and Akt phosphorylated at Ser473 in thoracic aortas of mice after banding. Total eNOS, both forms of phosphorylated eNOS, Akt, and phosphorylated Akt levels, as well as cGMP contents, were significantly increased 4 days after banding. The administration of PD123319 (an AT2 receptor antagonist) or icatibant (a bradykinin B2 receptor antagonist) abolished the banding-induced upregulation of both forms of phosphorylated eNOS, as well as elevation of cGMP, but did not affect the upregulation of eNOS, Akt, and phosphorylated Akt. In the in vitro experiments using aortic rings prepared from banded mice, Ang II produced significant increases in both forms of phosphorylated eNOS, as well as cGMP, and these effects were blocked by PD123319 and icatibant. Ang II–induced eNOS phosphorylation and cGMP elevation in aortic rings were inhibited by protein kinase A (PKA) inhibitors H89 and KT5720 but not by phosphatidylinositol 3-kinase inhibitors wortmannin and LY24002. The contractile response to Ang II was attenuated in aortic rings from banded mice via AT2 receptor, and this attenuation was blocked by PKA inhibitors. These results suggest that the activation of AT2 receptor by Ang II induces phosphorylation of eNOS at Ser633 and Ser1177 via a PKA-mediated signaling pathway, resulting in sustained activation of eNOS.
International Immunopharmacology | 2008
Katsutoshi Yayama; Hiroshi Okamoto
Angiotensin II (Ang II) plays important roles in the regulation of cardiovascular functions and diseases mainly via the type 1 (AT1) receptor. In contrast, recent studies have shown that the actions of Ang II via the type 2 (AT2) receptor are counter-regulatory to those mediated via the AT1 receptor. Using an animal model of hypertension, we have demonstrated that Ang II produces a vasodilator effect through the AT2 receptor via the bradykinin (BK)-dependent activation of endothelial nitric oxide (NO) synthase. In this review, we focus on the role of BK and NO in AT2-receptor-mediated vasodilation.
Hypertension | 2005
Hiromi Hiyoshi; Katsutoshi Yayama; Masaoki Takano; Hiroshi Okamoto
To evaluate the role of vascular angiotensin II (Ang II) type 2 (AT2) receptor in renovascular hypertension, we investigated expressions of AT2 receptor and endothelial nitric oxide synthase (eNOS) in thoracic aortas of mice with 2-kidney, 1-clip (2K1C) hypertension. The mRNA levels of AT2 receptor in aortas, but not those of AT1 and bradykinin B2 receptors, increased 14 days but not 42 days after clipping. The contractile response to Ang II (>0.1 &mgr;mol/L) was attenuated in aortic rings excised 14 days after clipping and was restored to that of rings from sham mice by antagonists of AT2 receptor (PD123319) and B2 receptor (icatibant). The aortic levels of total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), total Akt, and phosphorylated Akt at Ser473 (p-Akt) were increased in 2K1C mice on day 14, whereas only eNOS levels were increased on day 42. The aortic cGMP levels were ≈20-fold greater in 2K1C mice on day 14 compared with sham mice. Administration of nicardipine for 4 days before the excision of aortas 14 days after clipping not only reduced blood pressure but also decreased the aortic levels of eNOS, p-eNOS, Akt, p-Akt, and cGMP to sham levels, whereas the administration of PD123319 or icatibant to 2K1C mice decreased p-eNOS and cGMP to sham levels without affecting blood pressure and the levels of eNOS, Akt and p-Akt. These results suggest that vascular NO production is enhanced by increased eNOS phosphorylation via the activation of AT2 receptors in the course of 2K1C hypertension.
Hypertension | 2004
Hiromi Hiyoshi; Katsutoshi Yayama; Masaoki Takano; Hiroshi Okamoto
Abdominal aortic banding induces upregulation of the angiotensin II (Ang II) type-2 (AT2) receptor, thereby decreasing the contractile response to Ang II in the thoracic aorta of the rat. The aim of this study was to use a mouse model to clarify the mechanisms by which the banding elicits upregulation of the aortic AT2 receptor and the subsequent attenuation of Ang II responsiveness. Concomitantly with the elevation in blood pressure and plasma renin concentration after banding, AT2-receptor mRNA levels in the thoracic aorta rapidly increased in mice within 4 days. Upregulation of the AT2 receptor, as well as blood pressure elevation after banding, was abolished by losartan administration. The contractile response to Ang II was depressed in aortic rings of banding mice but not of sham mice, and was restored by either the AT2-receptor antagonist PD123319 or the bradykinin B2-receptor antagonist icatibant. cGMP content in the thoracic aorta of banding mice was 9-fold greater than that of sham mice, and the elevation was reduced to sham levels 1 hour after intravenous injection of PD123319 or icatibant. When aortic rings were incubated with Ang II, cGMP content increased in banding rings but not in sham rings; the pretreatment with PD123319 or icatibant inhibited Ang II-induced cGMP production. These results suggest that aortic banding induces upregulation of the AT2 receptor through increased circulating Ang II via the AT1 receptor, thereby activating a vasodilatory pathway in vessels through the AT2 receptor via the kinin/cGMP system.
Biochimica et Biophysica Acta | 2003
Katsutoshi Yayama; Naomi Kunimatsu; Yumiko Teranishi; Masaoki Takano; Hiroshi Okamoto
The generation of kinins on the surface of vascular endothelium has been postulated in two pathways involving plasma kallikrein and tissue kallikrein; the former pathway has been well documented, but the latter is controversial. To clarify the presence of a kinin-generating system on endothelium, we examined whether human umbilical vein endothelial cells (HUVEC) synthesize and release tissue kallikrein in vitro. Kallikrein-like activity hydrolyzing a peptide Pro-Phe-Arg-4-methyl-coumaryl-7-amide was detected in the culture medium of HUVEC and was inhibited by aprotinin but not by soybean trypsin inhibitor. Western blotting of HUVEC medium using anti-human tissue kallikrein antibodies demonstrated the release of tissue kallikrein from HUVEC, and the reverse transcription-polymerase chain reaction (RT-PCR) followed by Southern blotting revealed the expression of tissue kallikrein mRNA in HUVEC. HUVEC metabolically labeled with [35S]methionine released radioactive proteins corresponding to tissue kallikrein. RT-PCR also showed the expression of low-molecular-weight kininogen (L-kininogen) mRNA in HUVEC. The cGMP levels in HUVEC were significantly elevated by the incubation with angiotensin converting enzyme inhibitor, lisinopril, and the elevation was completely inhibited by aprotinin or bradykinin B2-receptor antagonist, FR172357. These results suggest that the endothelial cells continuously release an active form of tissue kallikrein which enables generation of kinins on the vascular endothelium.
Biochimica et Biophysica Acta | 1997
Masaoki Takano; Junya Kondo; Katsutoshi Yayama; Mieko Otani; Keiji Sano; Hiroshi Okamoto
We isolated cDNAs encoding low-molecular-weight (L-) and high-molecular-weight (H-) prekininogens from a mouse liver cDNA library using rat T-kininogen cDNA and rat H-kininogen cDNA respectively, as probes. The signal peptide, the heavy chain, and the bradykinin moiety, which are common between the two prekininogens, consist of 20, 359, and 9 amino acids, respectively, while the light chains of the L- and H-prekininogens are composed of 44 and 273 amino acids, respectively. All 19 cysteine residues present in both mouse prekininogens are located at the same positions relative to those of human origin. The light chain of H-prekininogen contains a characteristic 15-repeated His-Gly sequence and a conserved sequence for binding prekallikrein or factor XI. Northern blotting or reverse transcription-polymerase chain reaction followed by Southern blotting using mouse L- and H-kininogen cDNAs demonstrated that both L- and H-kininogens are predominantly expressed in the liver and kidney. L-Kininogen mRNA was also expressed in other tissues, such as the adrenal gland, brain, spinal cord, testis, lung, heart, and skin, while levels of H-kininogen mRNA in these tissues were too low to detect, suggesting that L-kininogen is synthesized in various tissues of mouse, while H-kininogen is exclusively synthesized in the liver and kidney. A genomic Southern blot using H-prekininogen cDNA revealed that the L- and H-prekininogen mRNAs in mouse are probably encoded by a single gene, as is the case in both human and bovine.
Biochimica et Biophysica Acta | 2000
Katsutoshi Yayama; Makoto Nagaoka; Masaoki Takano; Hiroshi Okamoto
To ascertain the existence of the kallikrein-kinin system in the heart, we have studied in vivo and in vitro whether rat cardiac tissue expresses kininogen, kallikrein and kinin receptor mRNAs. The reverse transcription-polymerase chain reaction demonstrated that the ventricular myocardium of adult male rats expressed mRNAs for T- and low-molecular-weight (L-) kininogens, tissue kallikreins such as true kallikrein and T-kininogenase, and bradykinin B2 receptor, but not those for high-molecular-weight kininogen and B1 receptor. Lipopolysaccharide (LPS; 0.5 mg/kg, i.v.) increased the levels of mRNA for T-kininogen at 12 h and the bradykinin B1 receptor at 24 h without affecting that for other components. All of these mRNAs for the kallikrein-kinin system were also detected in cultured cardiomyocytes derived from neonatal rat ventricles; dibutyryl cyclic AMP, LPS or inflammatory cytokines such as interleukin-1 and tumor necrosis factor, up-regulated mRNA expression of T-kininogen, T-kininogenase, or B1 receptor in these cells in vitro. These results suggest that there are two kinin-generating systems in rat myocardium comprising T-kininogen/T-kininogenase and L-kininogen/true kallikrein respectively, and that the former may be relatively important in inflammatory diseases or conditions in which cAMP levels increase in cardiomyocytes.
Biochimica et Biophysica Acta | 1998
Hiroshi Okamoto; Katsutoshi Yayama; Hiroki Shibata; Makoto Nagaoka; Masaoki Takano
To identify the presence of a local kallikrein-kinin system in vascular wall, we have studied whether rat vascular smooth muscle cells (VSMC) express kininogen in vitro and in vivo. Western blots using anti-T-kininogen antibody revealed the presence of T-kininogen in conditioned medium of cultured VSMC. T-Kininogen secretion by VSMC was markedly enhanced by the addition of lipopolysaccharide (LPS), angiotensin II (AII) and phorbol 12-myristate 13-acetate (PMA) to the culture. Experiments using specific inhibitors for protein kinases and on the PMA-induced down-regulation of protein kinase C suggested that a protein kinase C-dependent or unidentified pathway is involved in AII or LPS action, respectively. The intravenous injection of LPS (0.5 mg/kg) resulted in an increase in T-kininogen mRNA levels in the vascular smooth muscle of rat aorta, peaking at 16 h. Polyacrylamide gel electrophoresis of cDNA products generated by reverse transcription-polymerase chain reaction (RT-PCR) from aortic mRNA using primers specific for either T- or low-molecular-weight kininogen revealed that rat vascular smooth muscle expressed T-kininogen gene but not low-molecular-weight kininogen gene, and that LPS exclusively stimulated T-kininogen expression. The mRNA for high-molecular-weight kininogen was undetectable in either aortic smooth muscle or cultured VSMC by means of RT-PCR analysis. RT-PCR using specific primers for rat tissue kallikrein genes showed that aortic smooth muscle expressed KLK1 (true kallikrein) mRNA, but not KLK10 (T-kininogenase) mRNA. These results demonstrated that rat VSMC are a source of T-kininogen but not of low-molecular-weight- or high-molecular-weight kininogen, in contrast to the expression of true kallikrein but not of T-kininogenase by these cells.
European Journal of Pharmacology | 1993
Katsutoshi Yayama; Masae Kawao; Hideki Tujii; Norio Itoh; Hiroshi Okamoto
The appearance of nephrotic syndromes such as proteinuria, hypoalbuminemia, hypercholesterolemia and increase in blood nitrogen urea, induced in rats by injection of puromycin aminonucleoside was markedly inhibited by oral administration of Dup 753 (losartan), a novel angiotensin II receptor antagonist, at a dose of 1 or 2 mg/kg per day. The results suggest a possible involvement of the renin-angiotensin system in the development of puromycin aminonucleoside-induced nephrosis.