Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuya Okawa is active.

Publication


Featured researches published by Katsuya Okawa.


Nature | 1998

A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD

Masato Enari; Hideki Sakahira; Hideki Yokoyama; Katsuya Okawa; Akihiro Iwamatsu; Shigekazu Nagata

The homeostasis of animals is regulated not only by the growth and differentiation of cells, but also by cell death through a process known as apoptosis. Apoptosis is mediated by members of the caspase family of proteases, and eventually causes the degradation of chromosomal DNA. A caspase-activated deoxyribonuclease (CAD) and its inhibitor (ICAD) have now been identified in the cytoplasmic fraction of mouse lymphoma cells. CAD is a protein of 343 amino acids which carries a nuclear-localization signal; ICAD exists in a long and a short form. Recombinant ICAD specifically inhibits CAD-induced degradation of nuclear DNA and its DNase activity. When CAD is expressed with ICAD in COS cells or in a cell-free system, CAD is produced as a complex with ICAD: treatment with caspase 3 releases the DNase activity which causes DNA fragmentation in nuclei. ICAD therefore seems to function as a chaperone for CAD during its synthesis, remaining complexed with CAD to inhibit its DNase activity; caspases activated by apoptotic stimuli then cleave ICAD, allowing CAD to enter the nucleus and degrade chromosomal DNA.


Science | 1996

Regulation of Myosin Phosphatase by Rho and Rho-Associated Kinase (Rho-Kinase)

Kazushi Kimura; Masaaki Ito; Mutsuki Amano; Kazuyasu Chihara; Yuko Fukata; Masato Nakafuku; Bunpei Yamamori; Jianhua Feng; Takeshi Nakano; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP·RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP·RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.


The EMBO Journal | 1996

Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

Takeshi Matsui; Mutsuki Amano; Takaharu Yamamoto; Kazuyasu Chihara; Masato Nakafuku; Masaaki Ito; Takeshi Nakano; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho‐interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non‐hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho‐associated kinase (Rho‐kinase). Rho‐kinase has a catalytic domain in the N‐terminal portion, a coiled coil domain in the middle portion and a zinc finger‐like motif in the C‐terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho‐interacting interface. When COS7 cells were cotransfected with Rho‐kinase and activated RhoA, some Rho‐kinase was recruited to membranes. Thus it is likely that Rho‐kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho‐dependent signaling pathway.


The EMBO Journal | 1996

The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.

Toshimasa Ishizaki; Midori Maekawa; Kazuko Fujisawa; Katsuya Okawa; Akihiro Iwamatsu; Akiko Fujita; Yuji Saito; Akira Kakizuka; Narito Morii; Shuh Narumiya

The small GTP‐binding protein Rho functions as a molecular switch in the formation of focal adhesions and stress fibers, cytokinesis and transcriptional activation. The biochemical mechanism underlying these actions remains unknown. Using a ligand overlay assay, we purified a 160 kDa platelet protein that bound specifically to GTP‐bound Rho. This protein, p160, underwent autophosphorylation at its serine and threonine residues and showed the kinase activity to exogenous substrates. Both activities were enhanced by the addition of GTP‐bound Rho. A cDNA encoding p160 coded for a 1354 amino acid protein. This protein has a Ser/Thr kinase domain in its N‐terminus, followed by a coiled‐coil structure approximately 600 amino acids long, and a cysteine‐rich zinc finger‐like motif and a pleckstrin homology region in the C‐terminus. The N‐terminus region including a kinase domain and a part of coiled‐coil structure showed strong homology to myotonic dystrophy kinase over 500 residues. When co‐expressed with RhoA in COS cells, p160 was co‐precipitated with the expressed Rho and its kinase activity was activated, indicating that p160 can associate physically and functionally with Rho both in vitro and in vivo.


Science | 1996

Identification of a Putative Target for Rho as the Serine-Threonine Kinase Protein Kinase N

Mutsuki Amano; Hideyuki Mukai; Yoshitaka Ono; Kazuyasu Chihara; Takeshi Matsui; Yuko Hamajima; Katsuya Okawa; Akihiro Iwamatsu; Kozo Kaibuchi

Rho, a Ras-like small guanosine triphosphatase, has been implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid (LPA) to form stress fibers and focal contacts. The form of RhoA bound to guanosine triphosphate directly bound to and activated a serine-threonine kinase, protein kinase N (PKN). Activated RhoA formed a complex with PKN and activated it in COS-7 cells. PKN was phosphorylated in Swiss 3T3 cells stimulated with LPA, and this phosphorylation was blocked by treatment of cells with botulinum C3 exoenzyme. Activation of Rho may be linked directly to a serine-threonine kinase pathway.


Nature Cell Biology | 2006

The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres

Masahiro Okada; Iain M. Cheeseman; Tetsuya Hori; Katsuya Okawa; Ian X. McLeod; John R. Yates; Arshad Desai; Tatsuo Fukagawa

In vertebrates, centromeres lack defined sequences and are thought to be propagated by epigenetic mechanisms involving the incorporation of specialized nucleosomes containing the histone H3 variant centromere protein (CENP)-A. However, the precise mechanisms that target CENP-A to centromeres remain poorly understood. Here, we isolated a multi-subunit complex, which includes the established inner kinetochore components CENP-H and CENP-I, and nine other proteins, from both human and chicken cells. Our analysis of these proteins demonstrates that the CENP-H–I complex can be divided into three functional sub-complexes, each of which is required for faithful chromosome segregation. Interestingly, newly expressed CENP-A is not efficiently incorporated into centromeres in knockout mutants of a subclass of CENP-H–I complex proteins, indicating that the CENP-H–I complex may function, in part, as a marker directing CENP-A deposition to centromeres.


Immunity | 1999

BLNK Required for Coupling Syk to PLCγ2 and Rac1-JNK in B Cells

Masamichi Ishiai; Mari Kurosaki; Rajita Pappu; Katsuya Okawa; Irina Ronko; Chong Fu; Masao Shibata; Akihiro Iwamatsu; Andrew C. Chan; Tomohiro Kurosaki

Abstract Signaling through the B cell receptor (BCR) is essential for B cell function and development. Despite the key role of Syk in BCR signaling, little is known about the mechanism by which Syk transmits downstream effectors. BLNK (B cell LiNKer protein), a substrate for Syk, is now shown to be essential in activating phospholipase C (PLC)γ2 and JNK. The BCR-induced PLCγ2 activation, but not the JNK activation, was restored by introduction of PLCγ2 membrane-associated form into BLNK-deficient B cells. As JNK activation requires both Rac1 and PLCγ2, our results suggest that BLNK regulates the Rac1-JNK pathway, in addition to modulating PLCγ2 localization.


Nature | 2010

Stomagen positively regulates stomatal density in Arabidopsis.

Shigeo S. Sugano; Tomoo Shimada; Yu Imai; Katsuya Okawa; Atsushi Tamai; Masashi Mori; Ikuko Hara-Nishimura

Stomata in the epidermal tissues of leaves are valves through which passes CO2, and as such they influence the global carbon cycle. The two-dimensional pattern and density of stomata in the leaf epidermis are genetically and environmentally regulated to optimize gas exchange. Two putative intercellular signalling factors, EPF1 and EPF2, function as negative regulators of stomatal development in Arabidopsis, possibly by interacting with the receptor-like protein TMM. One or more positive intercellular signalling factors are assumed to be involved in stomatal development, but their identities are unknown. Here we show that a novel secretory peptide, which we designate as stomagen, is a positive intercellular signalling factor that is conserved among vascular plants. Stomagen is a 45-amino--rich peptide that is generated from a 102-amino-acid precursor protein designated as STOMAGEN. Both an in planta analysis and a semi-in-vitro analysis with recombinant and chemically synthesized stomagen peptides showed that stomagen has stomata-inducing activity in a dose-dependent manner. A genetic analysis showed that TMM is epistatic to STOMAGEN (At4g12970), suggesting that stomatal development is finely regulated by competitive binding of positive and negative regulators to the same receptor. Notably, STOMAGEN is expressed in inner tissues (the mesophyll) of immature leaves but not in the epidermal tissues where stomata develop. This study provides evidence of a mesophyll-derived positive regulator of stomatal density. Our findings provide a conceptual advancement in understanding stomatal development: inner photosynthetic tissues optimize their function by regulating stomatal density in the epidermis for efficient uptake of CO2.


Cell | 2008

CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore

Tetsuya Hori; Miho Amano; Aussie Suzuki; Chelsea B. Backer; Julie P. I. Welburn; Yimin Dong; Bruce F. McEwen; Wei-Hao Shang; Emiko Suzuki; Katsuya Okawa; Iain M. Cheeseman; Tatsuo Fukagawa

Kinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins. We demonstrate that CENP-W forms a DNA-binding complex together with the CCAN component CENP-T. This complex directly associates with nucleosomal DNA and with canonical histone H3, but not with CENP-A, in centromeric regions. CENP-T/CENP-W functions upstream of other CCAN components with the exception of CENP-C, an additional putative DNA-binding protein. Our analysis indicates that CENP-T/CENP-W and CENP-C provide distinct pathways to connect the centromere with outer kinetochore assembly. In total, our results suggest that the CENP-T/CENP-W complex is directly involved in establishment of centromere chromatin structure coordinately with CENP-A.


Cell | 1998

Katanin, a Microtubule-Severing Protein, Is a Novel AAA ATPase that Targets to the Centrosome Using a WD40-Containing Subunit

James J. Hartman; Jeff Mahr; Karen McNally; Katsuya Okawa; Akihiro Iwamatsu; Susan Thomas; Sarah Cheesman; John E. Heuser; Ronald D. Vale; Francis J. McNally

Microtubule disassembly at centrosomes is involved in mitotic spindle function. The microtubule-severing protein katanin, a heterodimer of 60 and 80 kDa subunits, was previously purified and shown to localize to centrosomes in vivo. Here we report the sequences and activities of the katanin subunits. p60 is a new member of the AAA family of ATPases, and we show that expressed p60 has microtubule-stimulated ATPase and microtubule-severing activities in the absence of p80. p80 is a novel protein containing WD40 repeats, which are frequently involved in protein-protein interactions. The p80 WD40 domain does not participate in p60 dimerization, but localizes to centrosomes in transfected mammalian cells. These results indicate katanins activities are segregated into a subunit (p60) that possesses enzymatic activity and a subunit (p80) that targets the enzyme to the centrosome.

Collaboration


Dive into the Katsuya Okawa's collaboration.

Top Co-Authors

Avatar

Akihiro Iwamatsu

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Toru Kita

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shun Shimohama

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisanori Horiuchi

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar

Ikuo Wada

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge