Katsuya Sato
Gifu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuya Sato.
Journal of Controlled Release | 2011
Xin Ming; Katsuya Sato; Rudolph L. Juliano
There is mounting interest in developing antisense and siRNA oligonucleotides into therapeutic entities; however, this potential has been limited by poor access of oligonucleotides to their pharmacological targets within cells. Transfection reagents, such as cationic lipids and polymers, are commonly utilized to improve functional delivery of nucleic acids including oligonucleotides. Cellular entry of large plasmid DNA molecules with the assistance of these polycationic carriers is mediated by some form of endocytosis; however, the mechanism for delivery of small oligonucleotide molecules has not been well established. In this study, splice-shifting oligonucleotides have been formulated into cationic lipoplexes and polyplexes, and their internalization mechanisms have been examined by using pharmacological and genetic inhibitors of endocytosis. The results showed that intercellular distribution of the oligonucleotides to the nucleus governs their pharmacological response. A mechanistic study revealed that oligonucleotides delivered by lipoplexes enter the cells partially by membrane fusion and this mechanism accounts for the functional induction of the target gene. In contrast, polyplexes are internalized by unconventional endocytosis pathways that do not require dynamin or caveolin. These studies may help rationally design novel delivery systems with superior transfection efficiency but lower toxicity.
Cancer Science | 2017
Toshimitsu Ohashi; Mitsuhiro Aoki; Hiroyuki Tomita; Takashi Akazawa; Katsuya Sato; Bunya Kuze; Keisuke Mizuta; Akira Hara; Hitoshi Nagaoka; Norimitsu Inoue; Yatsuji Ito
Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro‐inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan‐macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor‐secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2‐like macrophage polarization in human HNSCC.
Molecular Immunology | 2012
Tsuyoshi Sugiyama; Takaki Gotou; Kazuya Moriyama; Nodoka Kajiura; Takuya Hasegawa; Junko Tomida; Keita Takahashi; Takayuki Komatsu; Hiroshi Ueda; Katsuya Sato; Shunji Tokoro; Paola Neri; Hiroshi Mori
2-Aminopurine (2-AP) is widely used as an inhibitor for double stranded RNA-dependent protein kinase (PKR). Previously, we reported that 2-AP inhibits Toll-like receptor (TLR) ligand-induced nitric oxide production through the prevention of interferon (IFN)-β production. In this study, we investigated the mechanisms for 2-AP inhibition of lipopolysaccharide (LPS)-induced IFN-β production. A reporter gene assay showed that LPS-induced IFN-β promoter, but not nuclear factor (NF)-κB, activation was significantly inhibited by 2-AP. IFN-β promoter activation induced by the overexpression of Toll/interleukin-1 receptor domain-containing adaptor inducing IFN-β (TRIF) was significantly inhibited by 2-AP in a dose-dependent manner, while TRIF- or myeloid differentiation primary response gene 88-dependent NF-κB activation was not inhibited. IFN-β promoter activation induced by expression of the downstream signaling molecules, tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1, inhibitor of NF-κB kinase i and a constitutively active mutant of interferon regulatory factor (IRF)-3, was also inhibited by 2-AP. Another PKR inhibitor harboring the imidazolo-oxindole structure, however, did not affect TRIF signaling molecules-induced IFN-β promoter activation, suggesting that the inhibition of IFN-β transcription by 2-AP is independent of PKR inhibition. Further, we examined the effect of 2-AP on LPS-induced IRF-3 activation by immunoblotting. While 2-AP did not affect LPS-induced phosphorylation of IRF-3, nuclear translocation of IRF-3 was inhibited. Moreover, we revealed that LPS-induced phosphorylation of Akt, another key molecule involved in IRF-3 activation, was inhibited by 2-AP. These results suggest that 2-AP inhibits nuclear translocation of phosphorylated-IRF-3 by inhibiting Akt activation.
Cellular Signalling | 2013
Katsuya Sato; Hiroaki Handa; Masashi Kimura; Yukio Okano; Hitoshi Nagaoka; Takahiro Nagase; Tsuyoshi Sugiyama; Yukio Kitade; Hiroshi Ueda
FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the Rho family small GTPases. FLJ00018 is directly activated by heterotrimeric G protein Gβγ subunits. Using two-hybrid screening, we have identified non-muscle cytosolic actin as a binding partner of FLJ00018. We found that there were two actin-binding regions in FLJ00018 at the N-terminal region (150-283 amino acids) and at the C-terminal region (465-1386 amino acids). The overexpression of non-muscle cytosolic actin attenuated the FLJ00018-induced serum response element-dependent gene transcription. These results suggest that non-muscle cytosolic actin may be a negative regulator of FLJ00018 through its interaction with the Dbl homology domain.
Biochemical and Biophysical Research Communications | 2012
Yuko Yasui; Kazuyo Yamada; Satoru Takahashi; Mayumi Sugiura-Ogasawara; Katsuya Sato; Daisuke Miyazawa; Tsuyoshi Sugiyama; Yukio Kitade; Hiroshi Ueda
The glial cells missing a (GCMa) transcription factor plays a pivotal role in the placental development by regulating the expression of several genes in the placenta that are responsible for the proper formation of the syncytiotrophoblast. It is well known that the function of GCMa is regulated at both transcriptional and post-translational levels by the cyclic AMP (cAMP)/protein kinase A (PKA)-dependent pathway, the activation of which increases the GCMa protein level and leads to trophoblast differentiation into the syncytiotrophoblast. However, little is known about the regulatory control of GCMa by PKC-dependent signaling mechanism(s). To investigate whether GCMa is regulated by PKC-dependent pathway, we treated the human choriocarcinoma JEG-3 cells with phorbol 12-myristate 13-acetate (PMA) and studied its effect on the GCMa protein using a monoclonal anti-GCMa antibody we prepared. PMA caused a transient decrease in the endogenous GCMa protein level in JEG-3 cells that was accompanied by an increase in GCMa phosphorylation. The phosphorylation and degradation of GCMa by PMA treatment was effectively reduced by pretreatment with protein kinase C (PKC) inhibitors and a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, indicating a PKC- and MEK-dependent mechanism. Furthermore, we identified the serine residues 328, 378 and 383 to be the phosphorylation sites on GCMa that are involved in the PMA-induced degradation of GCMa. Our data demonstrate for the first time that GCMa is phosphorylated by the PKC- and MEK/extracellular signal-regulated kinase (ERK)-dependent mechanism, and that this phosphorylation is involved in its degradation process.
Journal of Biological Chemistry | 2014
Katsuya Sato; Tsuyoshi Sugiyama; Takahiro Nagase; Yukio Kitade; Hiroshi Ueda
Background: RhoGEFs play important roles in regulation of the actin cytoskeleton. Results: The FLJ00018/PLEKHG2 was phosphorylated, and activated by EGF signaling might be interpreted as a direct effect on its GEF activity (which is not established). Conclusion: The phosphorylation of FLJ00018 was involved in the regulation of cell morphology. Significance: This study suggests that FLJ00018 receives and integrates different stimuli as a relay point in cell signaling. FLJ00018/PLEKHG2 is a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. The function of FLJ00018 is regulated by the interaction of heterotrimeric GTP-binding protein Gβγ subunits or cytosolic actin. However, the details underlying the molecular mechanisms of FLJ00018 activation have yet to be elucidated. In the present study we show that FLJ00018 is phosphorylated and activated by β1-adrenergic receptor stimulation-induced EGF receptor (EGFR) transactivation in addition to Gβγ signaling. FLJ00018 is also phosphorylated and activated by direct EGFR stimulation. The phosphorylation of FLJ00018 by EGFR stimulation is mediated by the Ras/mitogen-activated protein kinase (MAPK) pathway. Through deletion and site-directed mutagenesis studies, we have identified Thr-680 as the major site of phosphorylation by EGFR stimulation. FLJ00018 T680A, in which the phosphorylation site is replaced by alanine, showed a limited response of the Neuro-2a cell morphology to EGF stimulation. Our results provide evidence that stimulation of the Ras/MAPK pathway by EGFR results in FLJ00018 phosphorylation at Thr-680, which in turn controls changes in cell shape.
Cellular Signalling | 2014
Katsuya Sato; Takahiro Suzuki; Yoshihiro Yamaguchi; Yukio Kitade; Takahiro Nagase; Hiroshi Ueda
PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor (RhoGEF), is activated by heterotrimeric GTP-binding protein (G protein) Gβγ subunits, and in turn activates the small G protein Rac and Cdc42, which have been shown to mediate signaling pathways leading to actin cytoskeletal reorganization. In the present study, we show that co-expression of the constitutively active mutant of cSrc, a non-receptor tyrosine kinase, and PLEKHG2 induced the tyrosine phosphorylation of PLEKHG2 in HEK293 cells. Through deletion and base substitution mutagenesis we have identified Tyr489 of PLEKHG2 as the site phosphorylated by cSrc. Furthermore, using a high-throughput src homology 2 (SH2) domain binding assay, the SH2 domain of ABL1 and the PI 3-kinse regulator subunit (PIK3R3) were identified as candidates for the binding partner of tyrosine-phosphorylated PLEKHG2. The interaction between PLEKHG2 and the full-length of PIK3R3, but not ABL1, occurs in a tyrosine-phosphorylation-dependent manner. Furthermore, PLEKHG2 is tyrosine phosphorylated at Tyr489 by ephrinB2 receptor signaling via cSrc. Investigation of the physiological function of tyrosine phosphorylation at Tyr489 in PLEKHG2 remains a subject for future studies.
Biochemical and Biophysical Research Communications | 2011
Rika Nagae; Katsuya Sato; Yuko Yasui; Yoshiko Banno; Takahiro Nagase; Hiroshi Ueda
Rho family GTPase-specific guanine nucleotide exchange factors of the Dbl family regulate a variety of cellular events including cytoskeletal arrangement, signal transduction, and gene expression through activation of Rho family GTPases. In this study, we show that hPEM-2 is a downstream effector of G(s) and G(q) signaling in Neuro-2a neuroblastoma cells. Co-expression with hPEM-2 and GTPase-deficient (constitutively active) mutants of Gαs (Gα(s)Q213L) or Gα(q) (Gα(q)Q209L), but not other GTPase-deficient mutants of Gα subunit and Gβγ subunits, activated serum response element (SRE)-dependent gene transcription, which is known to be induced by Rho family activation. Although a dominant negative mutant of Rac1 strongly blocks Gα(s)Q213L or Gα(q)Q209L/hPEM-2 activated SRE-dependent gene transcription, those of Cdc42 or RhoA are marginally affected. A PKA inhibitor, H-89, attenuated Gα(s)/hPEM-2-activated SRE-dependent gene transcription. And a dominant negative mutant of c-Src and an Src inhibitor attenuated Gα(q)Q209L/hPEM-2-activated SRE-dependent gene transcription. Experiments using hPEM-2 deletion mutants indicate that some regions of hPEM-2 play an important role in enhancing SRE activation by G(s) and G(q) signalings. These results reveal that G(s) and G(q) signalings regulate hPEM-2 functions through PKA and c-Src in Neuro-2a neuroblastoma cells, respectively.
Cellular Signalling | 2017
Kazue Sugiyama; Kenji Tago; Sayumi Matsushita; Masashi Nishikawa; Katsuya Sato; Yoshinori Muto; Takahiro Nagase; Hiroshi Ueda
PLEKHG2 is a Gβγ-dependent guanine nucleotide exchange factor (GEF) for the small GTPases Rac and Cdc42, and has been shown to mediate signalling pathways such as actin cytoskeleton reorganization and serum response element (SRE)-dependent gene transcription. Here we show that the constitutively active mutant of the Gαs subunit significantly attenuated PLEKHG2-induced SRE-mediated gene transcription. Strikingly, we observed that the constitutive activation of endogenous Gαs by treatment with CTx caused a similar inhibitory effect on PLEKHG2-induced activation of SRE. However, both the enforced expression of the catalytic subunit β of protein kinase A and the treatment with dibutyl-cyclic AMP failed to mimic the inhibitory effect of Gαs on PLEKHG2. Furthermore, the dominant negative mutant of protein kinase A had no effect on PLEKHG2-mediated SRE activation. Performing immunoprecipitation and an in vitro pulldown assay, we found that PLEKHG2 directly interacted with the active form of the Gαs subunit in cells. The interaction between PLEKHG2 and Gαs required the N-terminal region of PLEKHG2, which includes the DH domain, a functional domain of GEF, suggesting that Gαs directly masks the DH domain of PLEKHG2. In a previous study, we reported that Gβγ accelerates PLEKHG2-mediated SRE-dependent gene transcription. Interestingly, Gαs also inhibited the hyperactivation of SRE induced by the co-expression of Gβγ and PLEKHG2; however, Gαs and Gβγ bind to different regions of PLEKHG2. This is the first report to show that PLEKHG2 is a novel effector of Gαs, and is negatively regulated by the Gαs subunit through direct interaction.
Journal of Biological Chemistry | 2016
Katsuya Sato; Masashi Kimura; Kazue Sugiyama; Masashi Nishikawa; Yukio Okano; Hitoshi Nagaoka; Takahiro Nagase; Yukio Kitade; Hiroshi Ueda
PLEKHG2/FLJ00018 is a Gβγ-dependent guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. Here we showed that the zinc finger domain-containing protein four-and-a-half LIM domains 1 (FHL1) acts as a novel interaction partner of PLEKHG2 by the yeast two-hybrid system. Among the isoforms of FHL1 (i.e. FHL1A, FHL1B, and FHL1C), FHL1A and FHL1B interacted with PLEKHG2. We found that there was an FHL1-binding region at amino acids 58–150 of PLEKHG2. The overexpression of FHL1A but not FHL1B enhanced the PLEKHG2-induced serum response element-dependent gene transcription. The co-expression of FHL1A and Gβγ synergistically enhanced the PLEKHG2-induced serum response element-dependent gene transcription. Increased transcription activity was decreased by FHL1A knock-out with the CRISPR/Cas9 system. Compared with PLEKHG2-expressing cells, the number and length of finger-like protrusions were increased in PLEKHG2-, Gβγ-, and FHL1A-expressing cells. Our results provide evidence that FHL1A interacts with PLEKHG2 and regulates cell morphological change through the activity of PLEKHG2.