Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuyoshi Fujiwara is active.

Publication


Featured researches published by Katsuyoshi Fujiwara.


PLOS ONE | 2013

Generation of Live Offspring from Vitrified Mouse Oocytes of C57BL/6J Strain

Natsuki Kohaya; Katsuyoshi Fujiwara; Junya Ito; Naomi Kashiwazaki

In mammals, unfertilized oocytes are one of the most available stages for cryopreservation because the cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, it has generally been reported that the fertility and developmental ability of the oocytes are reduced by cryopreservation. C57BL/6J mice, an inbred strain, are used extensively for the production of transgenic and knockout mice. If the oocytes from C57BL/6J mice can be successfully cryopreserved, the cryopreservation protocol used will contribute to the high-speed production of not only gene-modified mice but also hybrid mice. Very recently, we succeeded in the vitrification of mouse oocytes derived from ICR (outbred) mice. However, our protocol can be applied to the vitrification of oocytes from an inbred strain. The aim of the present study was to establish the vitrification of oocytes from C57BL/6J mice. First, the effect of cumulus cells on the ability of C57BL/6J mouse oocytes to fertilize and develop in vitro was examined. The fertility and developmental ability of oocyte-removed cumulus cells (i.e., denuded oocytes, or DOs) after IVF were reduced compared to cumulus oocyte complexes (COCs) in both fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop into the 2-cell and blastocyst stages compared to the vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate, equivalent to the rate obtained with IVF using fresh COCs. Taken together, our results demonstrate that we succeeded for the first time in the vitrification of mouse oocytes from C57BL/6J mice. Our findings will also contribute to the improvement of oocyte vitrification not only in animals but also in clinical applications for human infertility.


PLOS ONE | 2013

Efficient Production of Live Offspring from Mouse Oocytes Vitrified with a Novel Cryoprotective Agent, Carboxylated e-poly-L-lysine

Hitomi Watanabe; Natsuki Kohaya; Maki Kamoshita; Katsuyoshi Fujiwara; Kazuaki Matsumura; Suong-Hyu Hyon; Junya Ito; Naomi Kashiwazaki

In cryopreservation of mammalian germ cells, unfertilized oocytes are one of the most available stages because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, it has been generally reported that the fertility and developmental ability of the oocytes are reduced by cryopreservation. Therefore further improvement will be required. Very recently, a new cryoprotective agent (CPA), called as carboxylated ε-poly-L-lysine (COOH-PLL), has been developed to reduce physical and physiological damage by cryopreservation in mammalian stem cells. However, it is unclear the effect of COOH-PLL on fertility and developmental ability of vitrified oocytes. In this study, we used COOH-PLL as a CPA with ethylene glycol (EG) for vitrification of mouse oocytes. Cumulus-oocyte complexes (COCs) were collected from ICR mice and then vitrified with Cryotop using different concentration of COOH-PLL and EG. A combined treatment with COOH-PLL and EG showed high survival rate (more than 90%) of vitrified-warmed COCs after in vitro fertilization. In addition, the fertility and developmental ability of COCs vitrified with E20P10 [EG 20% (v/v) and COOH-PLL 10% (w/v)] or E15P15 group (EG 15% and COOH-PLL 15%) were significantly higher than those with E10P20 (EG10% and COOH-PLL 20%) or P30 group (PLL30%). The vitrified COCs in E20P10 group developed to term at a high success rate (46.2%) and it was significantly higher than that in control (E30) group (34.8%). Our present study demonstrated for the first time that COOH-PLL is effective for vitrification of mouse oocytes.


Animal Science Journal | 2013

Vitrification procedure decreases inositol 1,4,5-trisphophate receptor expression, resulting in low fertility of pig oocytes.

Masahiko Hirose; Maki Kamoshita; Katsuyoshi Fujiwara; Tsubasa Kato; Ayaka Nakamura; Richard J. H. Wojcikiewicz; Jan B. Parys; Junya Ito; Naomi Kashiwazaki

Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm-penetrated oocytes were observed to some extent (30-40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two-cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3 R1), the channel responsible for Ca(2+) release during IVF in porcine oocytes. Localization of IP3 R1 close to the plasma membrane and total expression level of IP3 R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified-warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3 R1 by the vitrification procedure.


Cryobiology | 2011

Full-term development of rats from oocytes fertilized in vitro using cryopreserved ejaculated sperm.

Yasunari Seita; Katsuyoshi Fujiwara; Akiko Takizawa; Koji Furukawa; Tomo Inomata; Junya Ito; Naomi Kashiwazaki

For preservation of rat spermatozoa, the general-purpose method requires that the male be sacrificed for collection of spermatozoa from the epididymides. However, it would be highly useful if the ejaculated spermatozoa could be successfully cryopreserved and the frozen-thawed spermatozoa used for in vitro fertilization, since this would allow the genetically valuable rats to be maintained alive rather than sacrificed. The aim of the present study was to clarify whether ejaculated rat spermatozoa could be successfully cryopreserved and fertilized in vitro. The motility and viability of frozen-thawed ejaculated spermatozoa were similar to those of frozen-thawed epididymal spermatozoa (around 10%). The percentage of acrosomal integrity in epididymal spermatozoa was significantly higher than that in ejaculated spermatozoa after freezing/thawing. The level of capacitation-associated protein tyrosine phosphorylation in frozen-thawed ejaculated sperm was slightly increased at 5h. When the frozen-thawed ejaculated spermatozoa were used for in vitro fertilization, the percentages of fertilization, pronuclear formation, and development to the 2-cell stage (26.5%, 23.0%, and 91.0%, respectively) were similar to those of frozen-thawed epididymal spermatozoa (19.4%, 15.0%, and 84.1%, respectively). However, the rate of blastocyst formation in the ejaculated group was significantly lower than that in the epididymal group (12.0% vs 43.2%). Results from the embryo transfer experiment showed that the proportions of embryos developed to term were similar between the ejaculated (47.7%) and epididymal groups (53.7%). We showed here for the first time that ejaculated spermatozoa can be cryopreserved and the frozen-thawed sperm could be developed to term via in vitro fertilization in rats.


Cryobiology | 2014

The effect of a novel cryoprotective agent, carboxylated ε-poly-l-lysine, on the developmental ability of re-vitrified mouse embryos at the pronuclear stage

Yurie Shibao; Katsuyoshi Fujiwara; Yuki Kawasaki; Kazuaki Matsumura; Suong-Hyu Hyon; Junya Ito; Naomi Kashiwazaki

Transgenic animals are generally produced by microinjection of exogeneous DNA into embryos at the pronuclear (PN) stage. PN embryos also can be used for knockout animals because artificial nucleases such as zinc-finger nuclease or transcription activator-like effector nuclease are now available for modification of the targeted gene. If the embryos can be vitrified with multiple rounds, the remaining embryos without microinjection can be reused. In this study, we examined the developmental competence of repetitively vitrified mouse embryos at the PN stage using Cryotop. It was also examined whether a new cryoprotective agent (CPA), carboxylated ε-poly-l-lysine (COOH-PLL), is available for vitrification of mouse embryos. PN embryos were vitrified with dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as CPAs. After warming, some embryos were re-vitrified up to three times. The re-vitrification did not affect survival and in vitro developmental ability. PN embryos were also vitrified with COOH-PLL instead of DMSO up to three times. The embryos re-vitrified with COOH-PLL and EG also maintained high survival and developmental ability. However embryos vitrified with COOH-PLL and EG at three times significantly showed higher developmental ability (61.2±3.1%) than those vitrified with DMSO and EG at three times (44.2±2.7%) which was equivalent to that of fresh embryos (70.0±3.6%). Taken together, our results show that re-vitrification of mouse PN embryos did not have a detrimental effect on the in vitro and in vivo development of the embryos. In addition, COOH-PLL is available as a CPA for vitrification of mouse PN embryos.


Animal Science Journal | 2017

Generation of rats from vitrified oocytes with surrounding cumulus cells via in vitro fertilization with cryopreserved sperm

Katsuyoshi Fujiwara; Maki Kamoshita; Tsubasa Kato; Junya Ito; Naomi Kashiwazaki

The objective of this study was to evaluate fertility and full-term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co-cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full-term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm.


Animal Science Journal | 2015

The effect of M-phase stage-dependent kinase inhibitors on inositol 1,4,5-trisphosphate receptor 1 (IP3 R1) expression and localization in pig oocytes

Anucha Sathanawongs; Katsuyoshi Fujiwara; Tsubasa Kato; Masahiko Hirose; Maki Kamoshita; Richard J. H. Wojcikiewicz; Jan B. Parys; Junya Ito; Naomi Kashiwazaki

At fertilization, inositol 1,4,5-trisphosphate receptor type 1 (IP3 R1) has a crucial role in Ca(2+) release in mammals. Expression levels, localization and phosphorylation of IP3 R1 are important for its function, but it still remains unclear which molecule(s) regulates IP3 R1 behavior in pig oocytes. We examined whether there was a difference in localization of IP3 R1 after in vitro or in vivo maturation of pig oocytes. In mouse oocytes, large clusters of IP3 R1 were formed in the cortex of the oocyte except in a ring-shaped band of cortex adjacent to the spindle. However, no such clusters of IP3 R1 were observed in pig oocytes and there was no difference in its localization between in vitro and in vivo matured oocytes. We next tried to clarify which factor(s) regulates IP3 R1 localization, phosphorylation and expression using M-phase stage-dependent kinase inhibitors. Our results show that treatments with roscovitine (p34(cdc2) kinase inhibitor) or U0126 (mitogen-activated protein kinase inhibitor) did not affect IP3 R1 expression or localization in pig oocytes, although the latter strongly inhibited phosphorylation. However, treatment with BI-2536, an inhibitor of polo-like kinase 1 (Plk1), dramatically decreased the expression level of IP3 R1 in pig oocytes in a dose-dependent manner. From these results, it is suggested that Plk1 is involved in the regulation of IP3 R1 expression in pig oocytes.


PLOS ONE | 2017

Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent, carboxylated ε-poly-L-lysine

Maki Kamoshita; Tsubasa Kato; Katsuyoshi Fujiwara; Takafumi Namiki; Kazuaki Matsumura; Suong-Hyu Hyon; Junya Ito; Naomi Kashiwazaki

Vitrification is a powerful tool for the efficient production of offspring derived from cryopreserved oocytes or embryos in mammalian species including domestic animals. Genome editing technologies such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated (Cas)9 are now available even for domestic species, suggesting that the vitrification of embryos at the pronuclear stage (PN) will be more important because they could provide genomic host cells to be targeted by TALENs or CRISPR/Cas9. Although we reported the successful production of piglets derived from vitrified PN embryos by a solid-surface vitrification method with glutathione supplementation, further improvements are required. The cryoprotective agent (CPA) carboxylated ε-poly-L-lysine (COOH-PLL) was introduced in 2009. COOH-PLL reduces the physical and physiological damage caused by cryopreservation in mammalian stem cells and the vitrification of mouse oocytes and embryos. Those results suggested that vitrification of COOH-PLL may help improve the developmental ability of pig embryos vitrified at the PN stage. However, it remains unclear whether COOH-PLL is available as a CPA for the vitrification of embryos in domestic species. In this study, we evaluated COOH-PLL as a CPA with ethylene glycol (EG) and Cryotop as a device for the vitrification of PN pig embryos. Exposure to vitrification solution supplemented with COOH-PLL up to 30% did not decrease developmental ability to the 2-cell stage and the blastocyst stage. After warming, most of the vitrified embryos survived regardless of the concentration of COOH-PLL (76.0 ± 11.8% to 91.8 ± 4.6%). However, the vitrified embryos without COOH-PLL showed a lower development rate up to the blastocyst stage (1.3 ± 1.0%) compared to the fresh embryos (28.4 ± 5.0%) (p<0.05). In contrast, supplementation of 20% (w/v) COOH-PLL in the vitrification solution dramatically improved the developmental ability to blastocysts of the vitrified embryos (19.4 ± 4.6%) compared to those without COOH-PLL (p<0.05). After the transfer of embryos vitrified with 30% (v/v) EG and 20% (w/v) COOH-PLL, we successfully obtained 15 piglets from 8 recipients. Taken together, our present findings demonstrate for the first time that COOH-PLL is an effective CPA for embryo vitrification in the pig. COOH-PLL is a promising CPA for further improvements in the vitrification of oocytes and embryos in mammalian species.


Journal of Reproduction and Development | 2011

High Developmental Rates of Mouse Oocytes Cryopreserved by an Optimized Vitrification Protocol: The Effects of Cryoprotectants, Calcium and Cumulus Cells

Natsuki Kohaya; Katsuyoshi Fujiwara; Junya Ito; Naomi Kashiwazaki


Journal of Reproduction and Development | 2010

Ethylene Glycol-supplemented Calcium-free Media Improve Zona Penetration of Vitrified Rat Oocytes by Sperm Cells

Katsuyoshi Fujiwara; Daisuke Sano; Yasunari Seita; Tomo Inomata; Junya Ito; Naomi Kashiwazaki

Collaboration


Dive into the Katsuyoshi Fujiwara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuaki Matsumura

Japan Advanced Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suong-Hyu Hyon

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge