Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsuzumi Okumura is active.

Publication


Featured researches published by Katsuzumi Okumura.


Journal of Biological Chemistry | 1999

Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A).

Kotomi Fujishige; Jun Kotera; Hideo Michibata; Keizo Yuasa; Shin-ichiro Takebayashi; Katsuzumi Okumura; Kenji Omori

cDNA encoding a novel phosphodiesterase (PDE) was isolated from a human fetal lung cDNA library and designated PDE10A. The deduced amino acid sequence contains 779 amino acids, including a putative cGMP binding sequence in the amino-terminal portion of the molecule and a catalytic domain that is 16–47% identical in amino acid sequence to those of other PDE families. Recombinant PDE10A transfected and expressed in COS-7 cells hydrolyzed cAMP and cGMP with K m values of 0.26 and 7.2 μm, respectively, and V max with cGMP was almost twice that with cAMP. Of the PDE inhibitors tested, dipyridamole was most effective, with IC50 values of 1.2 and 0.45 μm for inhibition of cAMP and cGMP hydrolysis, respectively. cGMP inhibited hydrolysis of cAMP, and cAMP inhibited cGMP hydrolysis with IC50 values of 14 and 0.39 μm, respectively. Thus, PDE10A exhibited properties of a cAMP PDE and a cAMP-inhibited cGMP PDE. PDE10A transcripts were particularly abundant in the putamen and caudate nucleus regions of brain and in thyroid and testis, and in much lower amounts in other tissues. The PDE10A gene was located on chromosome 6q26 by fluorescentin situ hybridization analysis. PDE10A represents a new member of the PDE superfamily, exhibiting unique kinetic properties and inhibitor sensitivity.


Gene | 1999

Cloning, expression and chromosome locations of the human DNMT3 gene family

Shaoping Xie; Zhenjuan Wang; Masaki Okano; Masahiro Nogami; Yuan Li; Wei-Wu He; Katsuzumi Okumura; En Li

DNA methylation plays an important role in animal development and gene regulation. In mammals, several genes encoding DNA cytosine methyltransferases have been identified. DNMT1 is constitutively expressed and is required for the maintenance of global methylation after DNA replication. In contrast, the murine Dnmt3 family genes appear to be developmentally regulated and behave like de novo DNA methyltransferases in vitro. In this study, we have cloned human DNMT3A and DNMT3B that encode full-length DNMT3A and DNMT3B proteins with 98% and 94% amino acid sequence identity to their murine homologues. The DNMT3A and DNMT3B show high homology in the carboxy terminal catalytic domain and contain a conserved cysteine-rich region, which shares homology with the X-linked ATRX gene of the SNF2/SWI family. We have mapped human DNMT3A and DNMT3B to chromosomes 2p23 and 20q11.2 respectively, and determined the DNMT3B genomic structure. We further show that DNMT3A expression is ubiquitous and can be readily detected in most adult tissues, whereas DNMT3B is expressed at very low levels in most tissues except testis, thyroid and bone marrow. Significantly, both DNMT3A and DNMT3B expression is elevated in several tumor cell lines to levels comparable to DNMT1. The cloning of the human DNMT3 genes will facilitate further biochemical and genetic studies of their functions in establishment of DNA methylation patterns, regulation of gene expression and tumorigenesis.


Molecular and Cellular Biology | 1999

Methylation-Mediated Transcriptional Silencing in Euchromatin by Methyl-CpG Binding Protein MBD1 Isoforms

Naoyuki Fujita; Shin-ichiro Takebayashi; Katsuzumi Okumura; Shinichi Kudo; Tsutomu Chiba; Hideyuki Saya; Mitsuyoshi Nakao

ABSTRACT DNA methylation of promoter-associated CpG islands is involved in the transcriptional repression of vertebrate genes. To investigate the mechanisms underlying gene inactivation by DNA methylation, we characterized a human MBD1 protein, one of the components of MeCP1, which possesses a methyl-CpG binding domain (MBD) and cysteine-rich (CXXC) domains. Four novel MBD1 isoforms (MBD1v1, MBD1v2, MBD1v3, and MBD1v4) were identified by the reverse transcription-PCR method. We found that these transcripts were alternatively spliced in the region of CXXC domains and the C terminus. Green fluorescent protein-fused MBD1 was localized to multiple foci on the human genome, mostly in the euchromatin regions, and particularly concentrated in the pericentromeric region of chromosome 1. Both the MBD sequence and genome methylation were required for proper localization of the MBD1 protein. We further investigated whether MBD1 isoforms are responsible for transcriptional repression of human genes. A bacterially expressed MBD1 protein bound preferentially to methylated DNA fragments containing CpG islands from the tumor suppressor genes p16,VHL, and E-cadherin and from an imprintedSNRPN gene. All MBD1 isoforms inhibited promoter activities of these genes via methylation. Interestingly, MBD1 isoforms v1 and v2 containing three CXXC domains also suppressed unmethylated promoter activities in mammalian cells. These effects were further manifested inDrosophila melanogaster cells, which lack genome methylation. Sp1-activated transcription of methylated p16and SNRPN promoters was inhibited by all of the MBD1 isoforms, whereas the isoforms v1 and v2 reduced Sp1-activated transcription from unmethylated promoters as well. These findings suggested that the MBD1 isoforms have different roles in methylation-mediated transcriptional silencing in euchromatin.


Journal of Cell Biology | 2008

PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA

Kazuto Sugimura; Shin-ichiro Takebayashi; Hiroshi Taguchi; Shunichi Takeda; Katsuzumi Okumura

Poly-ADP ribose polymerase 1 (PARP-1) is activated by DNA damage and has been implicated in the repair of single-strand breaks (SSBs). Involvement of PARP-1 in other DNA damage responses remains controversial. In this study, we show that PARP-1 is required for replication fork slowing on damaged DNA. Fork progression in PARP-1−/− DT40 cells is not slowed down even in the presence of DNA damage induced by the topoisomerase I inhibitor camptothecin (CPT). Mammalian cells treated with a PARP inhibitor or PARP-1–specific small interfering RNAs show similar results. The expression of human PARP-1 restores fork slowing in PARP-1−/− DT40 cells. PARP-1 affects SSB repair, homologous recombination (HR), and nonhomologous end joining; therefore, we analyzed the effect of CPT on DT40 clones deficient in these pathways. We find that fork slowing is correlated with the proficiency of HR-mediated repair. Our data support the presence of a novel checkpoint pathway in which the initiation of HR but not DNA damage delays the fork progression.


Biochemical and Biophysical Research Communications | 2010

Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation.

Rumiko Ogawa; Chie Tanaka; Masahiro Sato; Haruka Nagasaki; Kazuto Sugimura; Katsuzumi Okumura; Yoshimi Nakagawa; Naohito Aoki

We have recently found that 3T3-L1 adipocytes secrete microvesicles, known as adipocyte-derived microvesicles (ADMs), with angiogenic activity. In this study, we found that ADMs contain RNA without typical 28S and 18S ribosomal RNA inside the vesicles. Microarray analysis revealed that ADMs contain approximately 7000 mRNAs and 140 microRNAs. Most of transcripts for adipocyte-specific and dominant genes were contained in the ADMs, and their abundance was mostly correlated with that in the donor cells. Abundance of adipocyte-related microRNAs was also mostly correlated with that in the donor cells. ADMs mediated transport of adiponectin and resistin gene transcripts into RAW264.7 macrophages. Moreover, adipocyte-specific gene transcripts such as adiponectin, resistin, and PPARgamma2 were found in microvesicles isolated from rat serum. Thus, ADM might play a role as a novel intercellular communication tool by transporting RNA in paracrine and possibly endocrine manners.


Molecular and Cellular Biology | 2006

Two-Step Regulation of Ad4BP/SF-1 Gene Transcription during Fetal Adrenal Development: Initiation by a Hox-Pbx1-Prep1 Complex and Maintenance via Autoregulation by Ad4BP/SF-1

Mohamad Zubair; Satoru Ishihara; Sanae Oka; Katsuzumi Okumura; Ken-ichirou Morohashi

ABSTRACT The orphan nuclear receptor Ad4BP/SF-1 (adrenal 4 binding protein/steroidogenic factor 1) is essential for the proper development and function of reproductive and steroidogenic tissues. Although the expression of Ad4BP/SF-1 is specific for those tissues, the mechanisms underlying this tissue-specific expression remain unknown. In this study, we used transgenic mouse assays to examine the regulation of the tissue-specific expression of Ad4BP/SF-1. An investigation of the entire Ad4BP/SF-1 gene locus revealed a fetal adrenal enhancer (FAdE) in intron 4 containing highly conserved binding sites for Pbx-Prep, Pbx-Hox, and Ad4BP/SF-1. Transgenic assays revealed that the Ad4 sites, together with Ad4BP/SF-1, develop an autoregulatory loop and thereby maintain transcription, while the Pbx/Prep and Pbx/Hox sites initiate transcription prior to the establishment of the autoregulatory loop. Indeed, a limited number of Hox family members were found to be expressed in the adrenal primordia. Whether a true fetal-type adrenal cortex is present in mice remained controversial, and this argument was complicated by the postnatal development of the so-called X zone. Using transgenic mice with lacZ driven by the FAdE, we clearly identified a fetal adrenal cortex in mice, and the X zone is the fetal adrenal cells accumulated at the juxtamedullary region after birth.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Cyclin A–Cdk1 regulates the origin firing program in mammalian cells

Yuko Katsuno; Ayumi Suzuki; Kazuto Sugimura; Katsuzumi Okumura; Doaa H. Zineldeen; Midori Shimada; Hiroyuki Niida; Takeshi Mizuno; Fumio Hanaoka; Makoto Nakanishi

Somatic mammalian cells possess well-established S-phase programs with specific regions of the genome replicated at precise times. The ATR–Chk1 pathway plays a central role in these programs, but the mechanism for how Chk1 regulates origin firing remains unknown. We demonstrate here the essential role of cyclin A2–Cdk1 in the regulation of late origin firing. Activity of cyclin A2–Cdk1 was hardly detected at the onset of S phase, but it was obvious at middle to late S phase under unperturbed condition. Chk1 depletion resulted in increased expression of Cdc25A, subsequent hyperactivation of cyclin A2–Cdk1, and abnormal replication at early S phase. Hence, the ectopic expression of cyclin A2–Cdk1AF (constitutively active mutant) fusion constructs resulted in abnormal origin firing, causing the premature appearance of DNA replication at late origins at early S phase. Intriguingly, inactivation of Cdk1 in temperature-sensitive Cdk1 mutant cell lines (FT210) resulted in a prolonged S phase and inefficient activation of late origin firing even at late S phase. Our results thus suggest that cyclin A2–Cdk1 is a key regulator of S-phase programs.


Genomics | 1995

A boundary of long-range G+C% mosaic domains in the human MHC locus: Pseudoautosomal boundary-like sequence exists near the boundary

Tatsuo Fukagawa; Kimihiko Sugaya; Ken-ichi Matsumoto; Katsuzumi Okumura; Asako Ando; Hidetoshi Inoko; Toshimichi Ikemura

The human genome is composed of long-range G+C% (GC%) mosaic structures related to chromosome bands. We found the human MHC locus to be an example of megabase-level GC% mosaic structures and predicted a possible boundary of the megabase-level domains within an undercharacterized 450-kb region harboring the junction of MHC classes II and III. Chromosome walking of the 450-kb region and base-compositional analysis precisely located the boundary of the mosaic domains, disclosing a sharp GC% transition. Near the transition point there was a 20-kb dense Alu cluster, a 30-kb dense LINE-1 cluster, and a sequence highly homologous with the pseudoautosomal boundary of the short arms of human sex chromosomes (PAB1X and PAB1Y); PAB1X and PAB1Y are the interface between sex-specific and pseudoautosomal regions. Many PAB1XY-like sequences (PABLs) were detected by hybridization against genomic DNA, and the new sequences defined the complete form of PABLs to be about 650 nt.


Genes to Cells | 2001

Monoallelic expresion of the odourant receptor gene and axonal projection of olfactory sensory neurones

Tomohiro Ishii; Shou Serizawa; Atsushi Kohda; Hiroko Nakatani; Toshihiko Shiroishi; Katsuzumi Okumura; Yoichiro Iwakura; Fumikiyo Nagawa; Akio Tsuboi; Hitoshi Sakano

We have previously generated transgenic mice carrying the murine odourant receptor gene, MOR28, tagged with lacZ. In this animal, the endogenous MOR28 is differently tagged with GFP. It was found that the transgenic and endogenous MOR28 genes are expressed in a mutually exclusive manner and that the two sets of olfactory sensory neurones (OSNs), each expressing either the transgenic or the endogenous MOR28, project their axons to separate glomeruli.


Biochemical Journal | 2005

Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein.

Nirmala Jagadish; Ritu Rana; Ramasamy Selvi; Deepshikha Mishra; Manoj Garg; Shikha Yadav; John C. Herr; Katsuzumi Okumura; Akiko Hasegawa; Koji Koyama; Anil Suri

We report a novel SPAG9 (sperm-associated antigen 9) protein having structural homology with JNK (c-Jun N-terminal kinase)-interacting protein 3. SPAG9, a single copy gene mapped to the human chromosome 17q21.33 syntenic with location of mouse chromosome 11, was earlier shown to be expressed exclusively in testis [Shankar, Mohapatra and Suri (1998) Biochem. Biophys. Res. Commun. 243, 561-565]. The SPAG9 amino acid sequence analysis revealed identity with the JNK-binding domain and predicted coiled-coil, leucine zipper and transmembrane domains. The secondary structure analysis predicted an alpha-helical structure for SPAG9 that was confirmed by CD spectra. Microsequencing of higher-order aggregates of recombinant SPAG9 by tandem MS confirmed the amino acid sequence and mono atomic mass of 83.9 kDa. Transient expression of SPAG9 and its deletion mutants revealed that both leucine zipper with extended coiled-coil domains and transmembrane domain of SPAG9 were essential for dimerization and proper localization. Studies of MAPK (mitogenactivated protein kinase) interactions demonstrated that SPAG9 interacted with higher binding affinity to JNK3 and JNK2 compared with JNK1. No interaction was observed with p38alpha or extracellular-signal-regulated kinase pathways. Polyclonal antibodies raised against recombinant SPAG9 recognized native protein in human sperm extracts and localized specifically on the acrosomal compartment of intact human spermatozoa. Acrosome-reacted spermatozoa demonstrated SPAG9 immunofluorescence, indicating its retention on the equatorial segment after the acrosome reaction. Further, anti-SPAG9 antibodies inhibited the binding of human spermatozoa to intact human oocytes as well as to matched hemizona. This is the first report of sperm-associated JNK-binding protein that may have a role in spermatozoa-egg interaction.

Collaboration


Dive into the Katsuzumi Okumura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge