Katty Borrini-Mayori
Cayetano Heredia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katty Borrini-Mayori.
American Journal of Tropical Medicine and Hygiene | 2015
Renzo Salazar; Ricardo Castillo-Neyra; Aaron W. Tustin; Katty Borrini-Mayori; César Náquira; Michael Z. Levy
Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease.
Proceedings of the Royal Society of London. Series B, Biological Sciences | 2014
Michael Z. Levy; Corentin M. Barbu; Ricardo Castillo-Neyra; Jenny Ancca-Juarez; Patricia Escalante-Mejia; Katty Borrini-Mayori; Malwina Niemierko; Tarub S. Mabud; Jere R. Behrman; Cesar Naquira-Velarde
Modern cities represent one of the fastest growing ecosystems on the planet. Urbanization occurs in stages; each stage characterized by a distinct habitat that may be more or less susceptible to the establishment of disease vector populations and the transmission of vector-borne pathogens. We performed longitudinal entomological and epidemiological surveys in households along a 1900 × 125 m transect of Arequipa, Peru, a major city of nearly one million inhabitants, in which the transmission of Trypanosoma cruzi, the aetiological agent of Chagas disease, by the insect vector Triatoma infestans, is an ongoing problem. The transect spans a cline of urban development from established communities to land invasions. We find that the vector is tracking the development of the city, and the parasite, in turn, is tracking the dispersal of the vector. New urbanizations are free of vector infestation for decades. T. cruzi transmission is very recent and concentrated in more established communities. The increase in land tenure security during the course of urbanization, if not accompanied by reasonable and enforceable zoning codes, initiates an influx of construction materials, people and animals that creates fertile conditions for epidemics of some vector-borne diseases.
PLOS Neglected Tropical Diseases | 2012
Gabrielle C. Hunter; Katty Borrini-Mayori; Jenny Ancca Juárez; Ricardo Castillo Neyra; Manuela Verastegui; Fernando S. Malaga Chavez; Juan G. Cornejo del Carpio; Eleazar Córdova Benzaquen; César Náquira; Robert H. Gilman; Caryn Bern; Michael Z. Levy
Background Chagas disease is endemic in the rural areas of southern Peru and a growing urban problem in the regional capital of Arequipa, population ∼860,000. It is unclear how to implement cost-effective screening programs across a large urban and periurban environment. Methods We compared four alternative screening strategies in 18 periurban communities, testing individuals in houses with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Vector data were obtained from routine Ministry of Health insecticide application campaigns. We performed ring case detection (radius of 15 m) around seropositive individuals, and collected data on costs of implementation for each strategy. Results Infection was detected in 21 of 923 (2.28%) participants. Cases had lived more time on average in rural places than non-cases (7.20 years versus 3.31 years, respectively). Significant risk factors on univariate logistic regression for infection were age (OR 1.02; p = 0.041), time lived in a rural location (OR 1.04; p = 0.022), and time lived in an infested area (OR 1.04; p = 0.008). No multivariate model with these variables fit the data better than a simple model including only the time lived in an area with triatomine bugs. There was no significant difference in prevalence across the screening strategies; however a self-assessment of disease risk may have biased participation, inflating prevalence among residents of houses where no infestation was detected. Testing houses with infected-vectors was least expensive. Ring case detection yielded four secondary cases in only one community, possibly due to vector-borne transmission in this community, apparently absent in the others. Conclusions Targeted screening for urban Chagas disease is promising in areas with ongoing vector-borne transmission; however, these pockets of epidemic transmission remain difficult to detect a priori. The flexibility to adapt to the epidemiology that emerges during screening is key to an efficient case detection intervention. In heterogeneous urban environments, self-assessments of risk and simple residence history questionnaires may be useful to identify those at highest risk for Chagas disease to guide diagnostic efforts.
Molecular Ecology | 2013
Erica A. Foley; Camilo E. Khatchikian; Josephine Hwang; Jenny Ancca-Juarez; Katty Borrini-Mayori; Michael Z. Levy; Dustin Brisson
The increasing rate of biological invasions resulting from human transport or human‐mediated changes to the environment has had devastating ecological and public health consequences. The kissing bug, Triatoma infestans, has dispersed through the Peruvian city of Arequipa. The biological invasion of this insect has resulted in a public health crisis, putting thousands of residents of this city at risk of infection by Trypanosoma cruzi and subsequent development of Chagas disease. Here, we show that populations of Tria. infestans in geographically distinct districts within and around this urban centre share a common recent evolutionary history although current gene flow is restricted even between proximal sites. The population structure among the Tria. infestans in different districts is not correlated with the geographical distance between districts. These data suggest that migration among the districts is mediated by factors beyond the short‐range migratory capabilities of Tria. infestans and that human movement has played a significant role in the structuring of the Tria. infestans population in the region. Rapid urbanization across southern South America will continue to create suitable environments for Tria. infestans, and knowledge of its urban dispersal patterns may play a fundamental role in mitigating human disease risk.
Journal of Vector Ecology | 2013
Kathleen M. Maloney; Jenny Ancca-Juarez; Renzo Salazar; Katty Borrini-Mayori; Malwina Niemierko; Joshua Yukich; César Náquira; Joseph Keating; Michael Z. Levy
ABSTRACT: The vector of Chagas disease, Triatoma infestans, is largely controlled by the household application of pyrethroid insecticides. Because effective, large-scale insecticide application is costly and necessitates numerous trained personnel, alternative control techniques are badly needed. We compared the residual effect of organophosphate-based insecticidal paint (Inesfly 5A IGR™ (I5A)) to standard deltamethrin, and a negative control, against T. infestans in a simulated natural environment. We evaluated mortality, knockdown, and ability to take a blood meal among 5th instar nymphs. I5A paint caused significantly greater mortality at time points up to nine months compared to deltamethrin (Fishers Exact Test, p < 0.01 in all instances). A year following application, mortality among nymphs in the I5A was similar to those in the deltamethrin (&khgr;2 = 0.76, df=1, p < 0.76). At months 0 and 1 after application, fewer nymphs exposed to deltamethrin took a blood meal compared to insects exposed to paint (Fishers Exact Tests, p < 0.01 and p < 0.01, respectively). Insecticidal paint may provide an easily-applied means of protection against vectors of Chagas disease.
PLOS Neglected Tropical Diseases | 2015
Camilo E. Khatchikian; Erica A. Foley; Corentin M. Barbu; Josephine Hwang; Jenny Ancca-Juarez; Katty Borrini-Mayori; César Náquira; Dustin Brisson; Michael Z. Levy
Chagas disease is a vector-borne disease endemic in Latin America. Triatoma infestans, a common vector of this disease, has recently expanded its range into rapidly developing cities of Latin America. We aim to identify the environmental features that affect the colonization and dispersal of T. infestans in an urban environment. We amplified 13 commonly used microsatellites from 180 T. infestans samples collected from a sampled transect in the city of Arequipa, Peru, in 2007 and 2011. We assessed the clustering of subpopulations and the effect of distance, sampling year, and city block location on genetic distance among pairs of insects. Despite evidence of genetic similarity, the majority of city blocks are characterized by one dominant insect genotype, suggesting the existence of barriers to dispersal. Our analyses show that streets represent an important barrier to the colonization and dispersion of T. infestans in Arequipa. The genetic data describe a T. infestans infestation history characterized by persistent local dispersal and occasional long-distance migration events that partially parallels the history of urban development.
Proceedings of the Royal Society B: Biological Sciences | 2015
Michael Z. Levy; Aaron Tustin; Ricardo Castillo-Neyra; Tarub S. Mabud; Katelyn Levy; Corentin M. Barbu; Jenny Ancca-Juarez; Katty Borrini-Mayori; Cesar Naquira-Velarde; Richard S. Ostfeld
Faeces-mediated transmission of Trypanosoma cruzi (the aetiological agent of Chagas disease) by triatomine insects is extremely inefficient. Still, the parasite emerges frequently, and has infected millions of people and domestic animals. We synthesize here the results of field and laboratory studies of T. cruzi transmission conducted in and around Arequipa, Peru. We document the repeated occurrence of large colonies of triatomine bugs (more than 1000) with very high infection prevalence (more than 85%). By inoculating guinea pigs, an important reservoir of T. cruzi in Peru, and feeding triatomine bugs on them weekly, we demonstrate that, while most animals quickly control parasitaemia, a subset of animals remains highly infectious to vectors for many months. However, we argue that the presence of these persistently infectious hosts is insufficient to explain the observed prevalence of T. cruzi in vector colonies. We posit that seasonal rains, leading to a fluctuation in the price of guinea pig food (alfalfa), leading to annual guinea pig roasts, leading to a concentration of vectors on a small subpopulation of animals maintained for reproduction, can propel T. cruzi through vector colonies and create a considerable force of infection for a pathogen whose transmission might otherwise fizzle out.
PLOS Neglected Tropical Diseases | 2014
Veronika Dorňáková; Renzo Salazar-Sanchez; Katty Borrini-Mayori; Oscar Carrion-Navarro; Michael Z. Levy; Günter A. Schaub; Alexandra Schwarz
Background Salivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure. Methodology and Principal Findings In SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs. Conclusion Salivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.
Journal of Medical Entomology | 2011
Kathleen M. Maloney; Jenny Ancca-Juarez; Renzo Salazar; Katty Borrini-Mayori; Danitza Pamo-Tito; Joseph Keating; Michael Z. Levy
ABSTRACT Control of the Chagas disease vector, Triatoma infestans, relies on the application of pyrethroid insecticides, especially deltamethrin. We performed laboratory studies to determine whether a T. infestans nymph that comes into contact with a deltamethrin-treated surface horizontally transfers the insecticide to subsequent triatomines. We found that a triatomine that walks on a deltamethrin-treated surface for a short period of time has the ability to transport the insecticide in concentrations sufficient to kill other triatomines with which it comes into contact. The effect was limited to high-density environments, and mortality as a result of secondary exposure was greater among second-instar nymphs compared with fifth-instar nymphs. Our results suggest that deltamethrin could be killing triatomines through both direct and indirect contact, although it remains unclear whether the phenomenon occurs in natural conditions.
BMJ Global Health | 2018
Alison M. Buttenheim; Valerie A. Paz-Soldan; Ricardo Castillo-Neyra; Amparo M. Toledo Vizcarra; Katty Borrini-Mayori; Molly McGuire; Claudia Arevalo-Nieto; Kevin G. Volpp; Dylan S. Small; Jere R. Behrman; Cesar Naquira-Verlarde; Michael Z. Levy
Objective To assess the efficacy of strategies informed by behavioural economics for increasing participation in a vector control campaign, compared with current practice. Design Pragmatic cluster randomised controlled trial. Setting Arequipa, Peru. Participants 4922 households. Interventions Households were randomised to one of four arms: advanced planning, leader recruitment, contingent group lotteries, or control. Main outcome measures Participation (allowing the house to be sprayed with insecticide) during the vector control campaign. Results In intent-to-treat analyses, none of the interventions increased participation compared with control (advanced planning adjusted OR (aOR) 1.07 (95% CI 0.87 to 1.32); leader recruitment aOR 0.95 (95% CI 0.78 to 1.15); group lotteries aOR 1.12 (95% CI 0.89 to 1.39)). The interventions did not improve the efficiency of the campaign (additional minutes needed to spray house from generalised estimating equation regressions: advanced planning 1.08 (95% CI −1.02 to 3.17); leader recruitment 3.91 (95% CI 1.85 to 5.97); group lotteries 3.51 (95% CI 1.38 to 5.64)) nor did it increase the odds that houses would be sprayed in an earlier versus a later stage of the campaign cycle (advanced planning aOR 0.94 (95% CI 0.76 to 1.25); leader recruitment aOR 0.68 (95% CI 0.55 to 0.83); group lotteries aOR 1.19 (95% CI 0.96 to 1.47)). A post hoc analysis suggested that advanced planning increased odds of participation compared with control among households who had declined to participate previously (aOR 2.50 (95% CI 1.41 to 4.43)). Conclusions Achieving high levels of household participation is crucial for many disease prevention efforts. Our trial was not successful in improving participation compared with the existing campaign. The trial highlights persistent challenges to field experiments as well as lessons about the intervention design process, particularly understanding barriers to participation through a behavioural lens. Trial registration number American Economic Association AEARCTR-0000620.