Katy Juárez
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katy Juárez.
PLOS ONE | 2009
Alfredo Mendoza-Vargas; Leticia Olvera; Maricela Olvera; Ricardo Grande; Leticia Vega-Alvarado; Blanca Taboada; Verónica Jiménez-Jacinto; Heladia Salgado; Katy Juárez; Bruno Contreras-Moreira; Araceli M. Huerta; Julio Collado-Vides
Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5′ RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of σ factors that control the expression of about 80% of these genes. As expected, the housekeeping σ70 was the most common type of promoter, followed by σ38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli.
Journal of Bacteriology | 2003
Gerardo Medina; Katy Juárez; Brenda Valderrama; Gloria Soberón-Chávez
Pseudomonas aeruginosa contains two transcription regulators (LasR and RhlR) that, when complexed with their specific autoinducers (3-oxo-dodecanoyl-homoserine lactone and butanoyl-homoserine lactone, respectively) activate transcription of different virulence-associated traits. We studied the RhlR-dependent transcriptional regulation of the rhlAB operon encoding rhamnosyltransferase 1, an enzyme involved in the synthesis of the surfactant monorhamnolipid, and showed that RhlR binds to a specific sequence in the rhlAB regulatory region, both in the presence and in the absence of its autoinducer. Our data suggest that in the former case it activates transcription, whereas in the latter it acts as a transcriptional repressor of this promoter. RhlR seems to repress the transcription of other quorum-sensing-regulated genes; thus, RhlR repressor activity might be of importance in the finely regulated expression of P. aeruginosa virulence-associated traits.
PLOS Computational Biology | 2008
Daniel Segura; Radhakrishnan Mahadevan; Katy Juárez; Derek R. Lovley
Previous model-based analysis of the metabolic network of Geobacter sulfurreducens suggested the existence of several redundant pathways. Here, we identified eight sets of redundant pathways that included redundancy for the assimilation of acetate, and for the conversion of pyruvate into acetyl-CoA. These equivalent pathways and two other sub-optimal pathways were studied using 5 single-gene deletion mutants in those pathways for the evaluation of the predictive capacity of the model. The growth phenotypes of these mutants were studied under 12 different conditions of electron donor and acceptor availability. The comparison of the model predictions with the resulting experimental phenotypes indicated that pyruvate ferredoxin oxidoreductase is the only activity able to convert pyruvate into acetyl-CoA. However, the results and the modeling showed that the two acetate activation pathways present are not only active, but needed due to the additional role of the acetyl-CoA transferase in the TCA cycle, probably reflecting the adaptation of these bacteria to acetate utilization. In other cases, the data reconciliation suggested additional capacity constraints that were confirmed with biochemical assays. The results demonstrate the need to experimentally verify the activity of key enzymes when developing in silico models of microbial physiology based on sequence-based reconstruction of metabolic networks.
Journal of Bacteriology | 2003
Gerardo Medina; Katy Juárez; Gloria Soberón-Chávez
The Pseudomonas aeruginosa rhlAB operon encodes the enzyme rhamnosyltransferase 1, which produces the biosurfactant mono-rhamnolipid; rhlAB induction is dependent on the quorum-sensing transcription activator RhlR complexed with the autoinducer N-butyryl-homoserine lactone (C(4)-HSL). In this work we studied rhlAB induction in a P. aeruginosa and Escherichia coli background. We found that, in both bacteria, its expression is not induced during the logarithmic phase of growth even in the presence of RhlR and C(4)-HSL. Additionally, we found that rhlAB expression is partially sigma(s) dependent.
BMC Genomics | 2009
Ching Leang; Julia Krushkal; Toshiyuki Ueki; Marko Puljic; Jun Sun; Katy Juárez; Cinthia Núñez; Gemma Reguera; Raymond J. DiDonato; Bradley Postier; Ronald M. Adkins; Derek R. Lovley
BackgroundThe role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during groundwater bioremediation or electricity production.ResultsAn rpoN deletion mutant could not be obtained under all conditions tested. In order to investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using either the computational prediction or the microarray transcriptome analysis included genes involved in flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes involved in extracellular electron transfer to Fe(III), which are known to be important for growth in subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT.ConclusionThe G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a complex transcriptional network controlling a variety of cellular processes.
Journal of Molecular Microbiology and Biotechnology | 2008
Raúl Noguez; Daniel Segura; Soledad Moreno; Alberto Hernandez; Katy Juárez; Guadalupe Espín
The ptsP, ptsO, and ptsN genes encode Enzyme INtr, NPr, and enzyme IIANtr (IIANtr) proteins of the nitrogen-related phosphotransferase system. These proteins participate in a phosphoryl transfer chain in several bacteria, where IIANtr appears to be the terminal phosphoryl acceptor. Inactivation of the ptsP gene in Azotobacter vinelandii was previously shown to reduce poly-β-hydroxybutyrate (PHB) production. Therefore, the question of a role of the ptsO and ptsN gene products in PHB synthesis was raised. In this work we constructed strains carrying mutations in the ptsO and ptsN genes and tested their effects on PHB accumulation. In the ptsO mutant, PHB accumulation diminished as in the ptsP mutant, while the ptsN mutant accumulated more PHB than the wild-type strain. The negative effects of the ptsP and ptsO mutations on PHB accumulation was suppressed by the ptsN mutation, and a H68A mutation in the phosphorylatable site of IIANtr, impaired PHB accumulation similar to the ptsP mutation. The ptsP and ptsO mutations negatively affected transcription of the phbBAC biosynthetic operon and of the phbR gene coding for a transcriptional activator of phbBAC, whereas the ptsN mutation increased expression of this operon. Taken together our data provide genetic evidence suggesting that the non-phosphorylated form of IIANtr is involved in negative regulation of phbR and phbBAC expression in A. vinelandii.
Gene | 1993
Cristina Pérez; Katy Juárez; Esther García-Castells; Gloria Soberón; Luis Servín-González
A gene encoding an extracellular lipase from Streptomyces sp. M11 was cloned in the high-copy-number vector pIJ486, using S. lividans 66 as host. A 28-kDa protein was secreted by S. lividans carrying pB13, which harbors a 6-kb insert, and identified as the product of the cloned gene. Comparison of the N-terminal amino acid (aa) sequence of the purified extracellular lipase with the nucleotide (nt) sequence of the lip gene revealed the presence of a 48 aa long signal peptide. The nucleotide sequence also revealed the presence of a motif, Gly-His-Ser-Met-Gly, similar to the one found surrounding the active-site Ser in other lipases. The gene is most likely monocistronic. Subcloning experiments indicated that another gene might be required for high-level expression, since subcloning of the structural gene alone resulted in diminished extracellular lipase activity. The lipase gene promoter was identified by S1 mapping experiments, and found to be similar to other Streptomyces vegetative promoters.
Journal of Molecular Microbiology and Biotechnology | 2009
Katy Juárez; Byoung Chan Kim; Kelly P. Nevin; Leticia Olvera; Gemma Reguera; Derek R. Lovley; Barbara A. Methé
Growth using Fe(III) as a terminal electron acceptor is a critical physiological process in Geobacter sulfurreducens. However, the mechanisms of electron transfer during Fe(III) reduction are only now being understood. It has been demonstrated that the pili in G. sulfurreducens function as microbial nanowires conducting electrons onto Fe(III) oxides. A number of c-type cytochromes have also been shown to play important roles in Fe(III) reduction. However, the regulatory networks controlling the expression of the genes involved in such processes are not well known. Here we report that the expression of pilA, which encodes the pilistructural protein, is directly regulated by a two-component regulatory system in which PilR functions as an RpoN-dependent enhancer binding protein. Surprisingly, a deletion of the pilR gene affected not only insoluble Fe(III) reduction, which requires pili, but also soluble Fe(III) reduction, which, in contrast, does not require pili. Gene expression profiling using whole-genome DNA microarray and quantitative RT-PCR analyses obtained with a PilR-deficient mutant revealed that the expression of pilA and other pilin-related genes are downregulated, while many c-type cytochromes involved in Fe(III) reduction were differentially regulated. This is the first instance of an enhancer binding protein implicated in regulating genes involved in Fe(III) respiratory functions.
Applied and Environmental Microbiology | 2017
Edgardo I. Valenzuela; Alejandra Prieto-Davó; Nguyen E. López-Lozano; A. Hernandez-Eligio; Leticia Vega-Alvarado; Katy Juárez; Ana Sarahí García-González; Mercedes G. López; Francisco J. Cervantes
ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.
Gene | 2010
Julia Krushkal; Katy Juárez; Jose F. Barbe; Yanhua Qu; Angel Andrade; Marko Puljic; Ronald M. Adkins; Derek R. Lovley; Toshiyuki Ueki
Geobacter sulfurreducens is a species from the bacterial family Geobacteraceae, members of which participate in bioenergy production and in environmental bioremediation. G. sulfurreducens pili are electrically conductive and are required for Fe(III) oxide reduction and for optimal current production in microbial fuel cells. PilR is an enhancer binding protein, which is an activator acting together with the alternative sigma factor, RpoN, in transcriptional regulation. Both RpoN and PilR are involved in regulation of expression of the pilA gene, whose product is pilin, a structural component of a pilus. Using bioinformatic approaches, we predicted G. sulfurreducens sequence elements that are likely to be regulated by PilR. The functional importance of the genome region containing a PilR binding site predicted upstream of the pilA gene was experimentally validated. The predicted G. sulfurreducens PilR binding sites are similar to PilR binding sites of Pseudomonas and Moraxella. While the number of predicted PilR-regulated sites did not deviate from that expected by chance, multiple sites were predicted upstream of genes with roles in biosynthesis and function of pili and flagella, in secretory pathways, and in cell wall biogenesis, suggesting the possible involvement of G. sulfurreducens PilR in regulation of production and assembly of pili and flagella.