Katy O. Goyak
ExxonMobil
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katy O. Goyak.
Regulatory Toxicology and Pharmacology | 2013
Grace Patlewicz; Ted W. Simon; Katy O. Goyak; Richard D. Phillips; J. Craig Rowlands; Shawn Seidel; Richard A. Becker
Advances in high throughput and high content (HT/HC) methods such as those used in the fields of toxicogenomics, bioinformatics, and computational toxicology have the potential to improve both the efficiency and effectiveness of toxicity evaluations and risk assessments. However, prior to use, scientific confidence in these methods should be formally established. Traditional validation approaches that define relevance, reliability, sensitivity and specificity may not be readily applicable. HT/HC methods are not exact replacements for in vivo testing, and although run individually, these assays are likely to be used as a group or battery for decision making and use robotics, which may be unique in each laboratory setting. Building on the frameworks developed in the 2010 Institute of Medicine Report on Biomarkers and the OECD 2007 Report on (Q)SAR Validation, we present constructs that can be adapted to address the validation challenges of HT/HC methods. These are flexible, transparent, and require explicit specification of context and purpose of use such that scientific confidence (validation) can be defined to meet different regulatory applications. Using these constructs, we discuss how anchoring the assays and their prediction models to Adverse Outcome Pathways (AOPs) could facilitate the interpretation of results and support scientifically defensible fit-for-purpose applications.
Regulatory Toxicology and Pharmacology | 2014
Louis Anthony Cox; Douglas A. Popken; M. Sue Marty; J. Craig Rowlands; Grace Patlewicz; Katy O. Goyak; Richard A. Becker
High throughput (HTS) and high content (HCS) screening methods show great promise in changing how hazard and risk assessments are undertaken, but scientific confidence in such methods and associated prediction models needs to be established prior to regulatory use. Using a case study of HTS-derived models for predicting in vivo androgen (A), estrogen (E), thyroid (T) and steroidogenesis (S) endpoints in endocrine screening assays, we compare classification (fitting) models to cross validation (prediction) models. The more robust cross validation models (based on a set of endocrine ToxCast™ assays and guideline in vivo endocrine screening studies) have balanced accuracies from 79% to 85% for A and E, but only 23% to 50% for T and S. Thus, for E and A, HTS results appear promising for initial use in setting priorities for endocrine screening. However, continued research is needed to expand the domain of applicability and to develop more robust HTS/HCS-based prediction models prior to their use in other regulatory applications. Based on the lessons learned, we propose a framework for documenting scientific confidence in HTS assays and the prediction models derived therefrom. The documentation, transparency and the scientific rigor involved in addressing the elements in the proposed Scientific Confidence Framework could aid in discussions and decisions about the prediction accuracy needed for different applications.
International Journal of Toxicology | 2014
Walden E. Dalbey; Richard H. McKee; Katy O. Goyak; Robert W. Biles; Jay Murray; Russell White
Lubricating oil base stocks (LOBs) are substances used in the manufacture of finished lubricants and greases. They are produced from residue remaining after atmospheric distillation of crude oil that is subsequently fractionated by vacuum distillation and additional refining steps. Initial LOB streams that have been produced by vacuum distillation but not further refined may contain polycyclic aromatic compounds (PACs) and may present carcinogenic hazards. In modern refineries, LOBs are further refined by multistep processes including solvent extraction and/or hydrogen treatment to reduce the levels of PACs and other undesirable constituents. Thus, mildly (insufficiently) refined LOBs are potentially more hazardous than more severely (sufficiently) refined LOBs. This article discusses the evaluation of LOBs using statistical models based on content of PACs; these models indicate that insufficiently refined LOBs (potentially carcinogenic LOBs) can also produce systemic and developmental effects with repeated dermal exposure. Experimental data were also obtained in ten 13-week dermal studies in rats, eight 4-week dermal studies in rabbits, and seven dermal developmental toxicity studies with sufficiently refined LOBs (noncarcinogenic and commonly marketed) in which no observed adverse effect levels for systemic toxicity and developmental toxicity were 1000 to 2000 mg/kg/d with dermal exposures, typically the highest dose tested. Results in both oral and inhalation developmental toxicity studies were similar. This absence of toxicologically relevant findings was consistent with lower PAC content of sufficiently refined LOBs. Based on data on reproductive organs with repeated dosing and parameters in developmental toxicity studies, sufficiently refined LOBs are likely to have little, if any, effect on reproductive parameters.
International Journal of Toxicology | 2014
Walden E. Dalbey; Richard H. McKee; Katy O. Goyak; Jeffrey H. Charlap; Craig Parker; Russell White
Aromatic extracts (AEs; distillate AEs [DAEs] and residual AEs [RAEs]) are complex, highly viscous liquid petroleum streams with variable compositions derived by extraction of aromatic compounds from distillate and residual petroleum fractions from a vacuum distillation tower, respectively. The DAEs generally contain significant amounts of polycyclic aromatic compounds (PACs) and are carcinogenic. The RAEs typically contain lower concentrations of biologically active PACs. The PACs in refinery streams can cause effects in repeated-dose and developmental toxicity studies. In a 13-week dermal study, light paraffinic DAE had several dose-related effects involving multiple organs; no-observed-effect level was <5 mg/kg/d, with no overt toxicity. Predicted dose-responses at 10% (PDR10s), modeled doses causing a 10% effect on sensitive end points based on PAC content, ranged from 25 to 78 mg/kg/d for untested paraffinic DAEs. The no observed adverse effect level (NOAEL) for developmental toxicity for light paraffinic DAE was 5 mg/kg/d. Statistically significant developmental effects at higher doses were associated with maternal effects. The PDR10s for developmental toxicity of paraffinic DAEs ranged from 7 to >2000 mg/kg/d, reflecting differences due to variation in PACs. The NOAELs for RAEs were 500 mg/kg for 90-day studies and 2000 mg/kg for developmental toxicity. Reproductive toxicity is not considered to be a sensitive end point for AEs based on the toxicity tests with DAEs, RAEs, and other PAC-containing petroleum substances. In vivo micronucleus tests on heavy paraffinic DAE, RAEs, and a range of other petroleum substances have been negative. The exception to this general trend was a marginally positive response with light paraffinic DAE. Most DAEs are considered unlikely to produce chromosomal effects in vivo.
International Journal of Toxicology | 2014
Richard H. McKee; Fred Reitman; Ceinwen A. Schreiner; Russell White; Jeffrey H. Charlap; Thomas P. O’Neill; Katy O. Goyak
Heavy fuel oil (HFO) category substances are used to manufacture HFO, a product used in industrial boilers and marine diesel engines. Commercial HFOs and blending stream components are substances of complex and variable composition, composed of C20 to >C50 hydrocarbons, although lower molecular weight material may be added to reduce viscosity and improve flow characteristics. An HFO blending stream (catalytically cracked clarified oil [CCCO]) was tested for target organ and developmental toxicity in rats following repeated dermal administration at doses of 5, 25, or 50 mg/kg/d. In the repeated dose study, there was evidence of increased liver weights, reduced thymus weights, and reductions in hematological parameters with an overall no observed adverse effect level (NOAEL) of 5 mg/kg/d. In the developmental toxicity test, there were significant reductions in fetal survival, significant increases in resorption frequency, and significantly reduced fetal weights with an overall NOAEL of 5 mg/kg/d. These target organ and developmental effects are associated with the types and levels of aromatic constituents in these substances. Among HFO blending streams, CCCOs have the highest levels of aromatics and, because they produce the characteristic toxicological effects at the lowest levels, are considered as “reasonable worst-case examples” for this group of substances. Other HFO category members with lower levels of aromatics produce similar effects but have higher NOAELs. The potential for target organ and developmental effects of other HFO category members can be predicted from information on the types and levels of the aromatic constituents present in these substances.
International Journal of Toxicology | 2014
Richard H. McKee; Ceinwen A. Schreiner; Russell White; Mark Saperstein; Jeffrey H. Charlap; Thomas P. O'Neill; Katy O. Goyak; Mark J. Nicolich
Gas oils, used to manufacture diesel fuel and residential heating oil, are complex hydrocarbon substances with carbon numbers of C9-C30 and boiling ranges of approximately 150°C to 450°C. Target organ (liver enlargement, reduced thymus weights, and reductions in hematological parameters) and developmental (reduced fetal viability, increased resorption frequency, and reduced fetal weights) effects are associated with aromatic constituents present in some gas oils. Two types of gas oils were tested for repeated-dose and developmental toxicity following repeated dermal administration. A blend of commercial diesel fuels containing 26% aromatics, primarily single-ring compounds, did not cause either target organ or developmental effects at levels up to 600 mg/kg/d. “Cracked” gas oils containing higher levels of aromatic constituents were also tested. Because of limited sample availability, 2 cracked gas oil samples were tested, one for systemic effects and the other for developmental toxicity. The sample tested in the repeated-dose toxicity study (81% aromatics including approximately 10% 3-ring compounds) produced increased liver weights, reduced thymus weights, and reductions in hematological parameters. The overall no observed adverse effect level (NOAEL) was 100 mg/kg/d. The sample tested for developmental toxicity (65% aromatics including approximately 5% 3-ring compounds) resulted in significant reductions in fetal survival, significant increases in resorption frequency, and significant reductions in fetal weights with an overall NOAEL of 100 mg/kg/d. In summary, gas oils may or may not cause target organ and/or developmental effects depending on the levels and types of aromatic constituents that they contain.
Regulatory Toxicology and Pharmacology | 2012
Peter J. Boogaard; Katy O. Goyak; Robert W. Biles; Leo L.P. van Stee; Matthew S. Miller; Mary Jo Miller
Oral repeated-dose studies with low-viscosity mineral oils showed distinct species and strain differences, which are hypothesized to be due to differences in bioavailability, with Fischer 344 rats being more susceptible than Sprague-Dawley rats or dogs. Sensitive analytical methodology was developed for accurate measurement of low levels of mineral hydrocarbons and applied in single-dose toxicokinetics studies in rats and humans. Fischer 344 rats showed a 4-fold higher AUC(0-∞) and consistently higher blood and liver concentrations were found than Sprague-Dawley rats. Hepatic mineral hydrocarbon concentration tracked the blood concentration in both strains, indicating that blood concentrations can serve as functional surrogate measure for hepatic concentrations. In human volunteers receiving 1mg/kg body weight of low-viscosity white oil, all blood concentrations of mineral hydrocarbons were below the detection limit. Comparison with threshold blood concentrations associated with NOAELs in both rat strains, indicate that the margin-of-exposure is at least 37-fold. Using an internal dose metric rather than applied dose reduces the uncertainty around the temporary ADI considerably since it intrinsically accounts for intra- and inter-species differences. The current data support replacement of the temporary ADI of 0.01 mg/kg/day by a (permanent) ADI of at least 1.0mg/kg/day for low- and medium-viscosity mineral oils.
Toxicology Letters | 2016
Katy O. Goyak; Ming H. Kung; Min Chen; Keith K. Aldous; James J. Freeman
Residual aromatic extracts (RAE) are petroleum substances with variable composition predominantly containing aromatic hydrocarbons with carbon numbers greater than C25. Because of the high boiling nature of RAEs, the aromatics present are high molecular weight, with most above the range of carcinogenic polycyclic aromatic hydrocarbons (PAHs). However, refinery distillations are imperfect; some PAHs and their heteroatom-containing analogs (collectively referred to as polycyclic aromatic content or PAC) may remain in the parent stream and be extracted into the RAE, and overall PAC content is related to the carcinogenic potential of an RAE. We describe here a real-time analytical chemistry-based tool to assess the carcinogenic hazard of RAE via the development of a functional relationship between carcinogenicity and boiling point. Samples representative of steps along the RAE manufacturing process were obtained from five refineries to evaluate relationships between mutagenicity index (MI), PAC ring content and gas chromatographic distillation (GCD) curves. As expected, a positive linear relationship between MI and PAC ring content occurred, most specifically for 3-6 ring PAC (R2=0.68). A negative correlation was found between MI and temperature at 5% vaporization by GCD (R2=0.72), indicating that samples with greater amounts of lower boiling constituents were more likely to be carcinogenic. The inverse relationship between boiling range and carcinogenicity was further demonstrated by fractionation of select RAE samples (MI=0.50+0.07; PAC=1.70+0.51wt%; n=5) into low and high boiling fractions, where lower boiling fractions were both more carcinogenic than the higher boiling fractions (MI=2.36±0.55 and 0.17±0.11, respectively) and enriched in 3-6 ring PACs (5.20+0.70wt% and 0.97+0.35wt%, respectively). The criteria defining carcinogenicity was established as 479°C for the 5% vaporization points by GCD, with an approximate 95% probability of a future sample having an MI below the recommended limit of 0.4 for RAEs. Overall, these results provide a cost-efficient and real-time tool by which the carcinogenic potential of RAEs can be assessed at the refinery level, ultimately providing a means to readily monitor and minimize the carcinogenic potential of RAEs.
International Journal of Toxicology | 2011
Katy O. Goyak; Richard H. McKee; Gary Minsavage; Claude McGowan; Wayne C. Daughtrey; James J. Freeman
A paving asphalt and a vacuum residuum (derived from crude oil by atmospheric and subsequent vacuum distillation and used as a blend stock for asphalt) were tested in skin carcinogenesis assays in mice and in optimized Ames assays for mutagenic activity. In the skin cancer tests, each substance was applied twice weekly for 104 weeks to the clipped backs of groups of 50 male C3H mice. Neither the paving asphalt nor the vacuum residuum (30% weight/volume and 75% weight/weight in US Pharmacopeia mineral oil, respectively) produced any tumors. The positive control benzo[a]pyrene (0.05% w/v in toluene) induced tumors in 46 of 50 mice, demonstrating the effectiveness of the test method. Salmonella typhimurium tester strain TA98 was used in the optimized Ames assay to evaluate mutagenic potential. Dimethylsulfoxide (DMSO) extractions of the substances were not mutagenic when tested up to toxic limits. Thus, under the conditions of these studies, neither the paving asphalt nor the vacuum residuum was carcinogenic or mutagenic.
Critical Reviews in Toxicology | 2017
David Adenuga; Katy O. Goyak; R. Jeffrey Lewis
Abstract Toxicology feeding studies of mineral oil hydrocarbons (MOHs), within the carbon number range C22–C28, results in species-specific epithelioid granulomas in the liver of F-344 rats but not in other rat strains, or species. While MOH has been detected, and some pathological effects have been shown to occur in other organs/tissues of F-344 rats and other rat strains/species, it is generally accepted that the effect of toxicological concern is species-specific inflammatory liver granuloma. As oil retention and other MOH-related nontoxic pathological changes in the liver are observed in humans, some have hypothesized that the potential for oil accumulation over a lifetime, through dietary sources, may predispose humans to similar liver effects as observed in F-344 rats. To address this concern, a mode of action/human relevance framework (MoA/HRF) analysis for MOH-induced epithelioid granuloma in the F-344 rat model was developed. The key events for the development of liver epithelioid granulomas were identified as increased MOH intestinal absorption, preferential tissue retention and ultimately formation of necrotic granulomas encased by infiltrating inflammatory lymphocytes. The hypothesized MoA was evaluated using the modified Bradford Hill considerations for causality and was considered to be established in the F-344 rodent model. However, key strain/species differences in the rate of intestinal absorption, tissue retention of MOH and inflammatory response to MOH in the liver were identified. Overall, the F-344 rat MoA was not considered to be relevant to humans, consistent with data showing no evidence for the formation of epithelioid granulomas with humans even in cases of massive ingestion of MOHs.