Kaushal Joshi
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaushal Joshi.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Ping Mao; Kaushal Joshi; Jianfeng Li; Sung Hak Kim; Peipei Li; Lucas Santana-Santos; Soumya Luthra; Uma Chandran; Panayiotis V. Benos; Luke Smith; Maode Wang; Bo Hu; Shi Yuan Cheng; Robert W. Sobol; Ichiro Nakano
Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.
PLOS ONE | 2011
Mayumi Jijiwa; Habibe Demir; Snehalata Gupta; Crystal Leung; Kaushal Joshi; Nicholas Orozco; Tiffany T. Huang; Vedat O. Yildiz; Ichiyo Shibahara; Jason de Jesus; William H. Yong; Paul S. Mischel; Soledad Fernandez; Harley I. Kornblum; Ichiro Nakano
Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway.
Stem Cells | 2013
Kaushal Joshi; Yeshavanth Banasavadi-Siddegowda; Xiaokui Mo; Sung-Hak Kim; Ping Mao; Cenk Kig; Diana Nardini; Robert W. Sobol; Lionel M.L. Chow; Harley I. Kornblum; Ronald R. Waclaw; Monique Beullens; Ichiro Nakano
Glioblastoma multiforme (GBM) is a life‐threatening brain tumor. Accumulating evidence suggests that eradication of glioma stem‐like cells (GSCs) in GBM is essential to achieve cure. The transcription factor FOXM1 has recently gained attention as a master regulator of mitotic progression of cancer cells in various organs. Here, we demonstrate that FOXM1 forms a protein complex with the mitotic kinase MELK in GSCs, leading to phosphorylation and activation of FOXM1 in a MELK kinase‐dependent manner. This MELK‐dependent activation of FOXM1 results in a subsequent increase in mitotic regulatory genes in GSCs. MELK‐driven FOXM1 activation is regulated by the binding and subsequent trans‐phosphorylation of FOXM1 by another kinase PLK1. Using mouse neural progenitor cells (NPCs), we found that transgenic expression of FOXM1 enhances, while siRNA‐mediated gene silencing diminishes neurosphere formation, suggesting that FOXM1 is required for NPC growth. During tumorigenesis, FOXM1 expression sequentially increases as cells progress from NPCs, to pretumorigenic progenitors and GSCs. The antibiotic Siomycin A disrupts MELK‐mediated FOXM1 signaling with a greater sensitivity in GSC compared to neural stem cell. Treatment with the first‐line chemotherapy agent for GBM, Temozolomide, paradoxically enriches for both FOXM1 (+) and MELK (+) cells in GBM cells, and addition of Siomycin A to Temozolomide treatment in mice harboring GSC‐derived intracranial tumors enhances the effects of the latter. Collectively, our data indicate that FOXM1 signaling through its direct interaction with MELK regulates key mitotic genes in GSCs in a PLK1‐dependent manner and thus, this protein complex is a potential therapeutic target for GBM. STEM Cells 2013;31:1051–1063
Clinical Cancer Research | 2012
Takeshi Miyazaki; Yang Pan; Kaushal Joshi; Deepti Purohit; Bin Hu; Habibe Demir; Sarmistha Mazumder; Sachiko Okabe; Takao Yamori; Mariano S. Viapiano; Kazuo Shin-ya; Hiroyuki Seimiya; Ichiro Nakano
Purpose: Glioma stem cells (GSC) are a critical therapeutic target of glioblastoma multiforme (GBM). Experimental Design: The effects of a G-quadruplex ligand, telomestatin, were evaluated using patient-derived GSCs, non-stem tumor cells (non-GSC), and normal fetal neural precursors in vitro and in vivo. The molecular targets of telomestatin were determined by immunofluorescence in situ hybridization (iFISH) and cDNA microarray. The data were then validated by in vitro and in vivo functional assays, as well as by immunohistochemistry against 90 clinical samples. Results: Telomestatin impaired the maintenance of GSC stem cell state by inducing apoptosis in vitro and in vivo. The migration potential of GSCs was also impaired by telomestatin treatment. In contrast, both normal neural precursors and non-GSCs were relatively resistant to telomestatin. Treatment of GSC-derived mouse intracranial tumors reduced tumor sizes in vivo without a noticeable cell death in normal brains. iFISH revealed both telomeric and non-telomeric DNA damage by telomestatin in GSCs but not in non-GSCs. cDNA microarray identified a proto-oncogene, c-Myb, as a novel molecular target of telomestatin in GSCs, and pharmacodynamic analysis in telomestatin-treated tumor-bearing mouse brains showed a reduction of c-Myb in tumors in vivo. Knockdown of c-Myb phenocopied telomestatin-treated GSCs both in vitro and in vivo, and restoring c-Myb by overexpression partially rescued the phenotype. Finally, c-Myb expression was markedly elevated in surgical specimens of GBMs compared with normal tissues. Conclusions: These data indicate that telomestatin potently eradicates GSCs through telomere disruption and c-Myb inhibition, and this study suggests a novel GSC-directed therapeutic strategy for GBMs. Clin Cancer Res; 18(5); 1268–80. ©2012 AACR.
Stem Cells | 2013
Chunyu Gu; Yeshavanth Banasavadi-Siddegowda; Kaushal Joshi; Yuko Nakamura; Habibe Kurt; Snehalata Gupta; Ichiro Nakano
Accumulated evidence suggests that glioma stem cells (GSCs) may contribute to therapy resistance in high‐grade glioma (HGG). Although recent studies have shown that the serine/threonine kinase maternal embryonic leucine‐zipper kinase (MELK) is abundantly expressed in various cancers, the function and mechanism of MELK remain elusive. Here, we demonstrate that MELK depletion by shRNA diminishes the growth of GSC‐derived mouse intracranial tumors in vivo, induces glial fibrillary acidic protein (+) glial differentiation of GSCs leading to decreased malignancy of the resulting tumors, and prolongs survival periods of tumor‐bearing mice. Tissue microarray analysis with 91 HGG tumors demonstrates that the proportion of MELK (+) cells is a statistically significant indicator of postsurgical survival periods. Mechanistically, MELK is regulated by the c‐Jun NH(2)‐terminal kinase (JNK) signaling and forms a complex with the oncoprotein c‐JUN in GSCs but not in normal progenitors. MELK silencing induces p53 expression, whereas p53 inhibition induces MELK expression, indicating that MELK and p53 expression are mutually exclusive. Additionally, MELK silencing‐mediated GSC apoptosis is partially rescued by both pharmacological p53 inhibition and p53 gene silencing, indicating that MELK action in GSCs is p53 dependent. Furthermore, irradiation of GSCs markedly elevates MELK mRNA and protein expression both in vitro and in vivo. Clinically, recurrent HGG tumors following the failure of radiation and chemotherapy exhibit a statistically significant elevation of MELK protein compared with untreated newly diagnosed HGG tumors. Together, our data indicate that GSCs, but not normal cells, depend on JNK‐driven MELK/c‐JUN signaling to regulate their survival, maintain GSCs in an immature state, and facilitate tumor radioresistance in a p53‐dependent manner. STEM CELLS 2013;31:870–881
Stem cell reports | 2015
Sung Hak Kim; Kaushal Joshi; Ravesanker Ezhilarasan; Toshia R. Myers; Jason J. Siu; Chunyu Gu; Mariko Nakano-Okuno; David Taylor; Mutsuko Minata; Erik P. Sulman; Jeongwu Lee; Krishna P.L. Bhat; Anna Elisabetta Salcini; Ichiro Nakano
Summary Glioblastoma (GBM)-derived tumorigenic stem-like cells (GSCs) may play a key role in therapy resistance. Previously, we reported that the mitotic kinase MELK binds and phosphorylates the oncogenic transcription factor FOXM1 in GSCs. Here, we demonstrate that the catalytic subunit of Polycomb repressive complex 2, EZH2, is targeted by the MELK-FOXM1 complex, which in turn promotes resistance to radiation in GSCs. Clinically, EZH2 and MELK are coexpressed in GBM and significantly induced in postirradiation recurrent tumors whose expression is inversely correlated with patient prognosis. Through a gain-and loss-of-function study, we show that MELK or FOXM1 contributes to GSC radioresistance by regulation of EZH2. We further demonstrate that the MELK-EZH2 axis is evolutionarily conserved in Caenorhabditis elegans. Collectively, these data suggest that the MELK-FOXM1-EZH2 signaling axis is essential for GSC radioresistance and therefore raise the possibility that MELK-FOXM1-driven EZH2 signaling can serve as a therapeutic target in irradiation-resistant GBM tumors.
Neuro-oncology | 2011
Ichiro Nakano; Kaushal Joshi; Koppany Visnyei; Bin Hu; Momoko Watanabe; Diana Lam; Eric M. Wexler; Kuniyasu Saigusa; Yuko Nakamura; Dan R. Laks; Paul S. Mischel; Mariano Viapiano; Harley I. Kornblum
Glioblastoma multiforme (GBM) is a devastating disease, and the current therapies have only palliative effect. Evidence is mounting to indicate that brain tumor stem cells (BTSCs) are a minority of tumor cells that are responsible for cancer initiation, propagation, and maintenance. Therapies that fail to eradicate BTSCs may ultimately lead to regrowth of residual BTSCs. However, BTSCs are relatively resistant to the current treatments. Development of novel therapeutic strategies that effectively eradicate BTSC are, therefore, essential. In a previous study, we used patient-derived GBM sphere cells (stemlike GBM cells) to enrich for BTSC and identified maternal embryonic leucine-zipper kinase (MELK) as a key regulator of survival of stemlike GBM cells in vitro. Here, we demonstrate that a thiazole antibiotic, siomycin A, potently reduced MELK expression and inhibited tumor growth in vivo. Treatment of stemlike GBM cells with siomycin A resulted in arrested self-renewal, decreased invasion, and induced apoptosis but had little effect on growth of the nonstem cells of matched tumors or normal neural stem/progenitor cells. MELK overexpression partially rescued the phenotype of siomycin A-treated stemlike GBM cells. In vivo, siomycin A pretreatment abraded the sizes of stemlike GBM cell-derived tumors in immunodeficient mice. Treatment with siomycin A of mice harboring intracranial tumors significantly prolonged their survival period compared with the control mice. Together, this study may be the first model to partially target stemlike GBM cells through a MELK-mediated pathway with siomycin A to pave the way for effective treatment of GBM.
Cancer Research | 2014
Hye Min Jeon; Sung Hak Kim; Xun Jin; Jong Bae Park; Se Hoon Kim; Kaushal Joshi; Ichiro Nakano; Hyunggee Kim
Glioma-initiating cells (GIC), which reside within the perivascular microenvironment to maintain self-renewal capacity, are responsible for glioblastoma initiation, progression, and recurrence. However, the molecular mechanisms controlling crosstalk between GICs and endothelial cells are poorly understood. Here, we report that, in both GICs and endothelial cells, platelet-derived growth factor (PDGF)-driven activation of nitric oxide (NO) synthase increases NO-dependent inhibitor of differentiation 4 (ID4) expression, which in turn promotes JAGGED1-NOTCH activity through suppression of miR129 that specifically represses JAGGED1 suppression. This signaling axis promotes tumor progression along with increased GIC self-renewal and growth of tumor vasculature in the xenograft tumors, which is dramatically suppressed by NOTCH inhibitor. ID4 levels correlate positively with NOS2 (NO synthase-2), HES1, and HEY1 and negatively with miR129 in primary GICs. Thus, targeting the PDGF-NOS-ID4-miR129 axis and NOTCH activity in the perivascular microenvironment might serve as an efficacious therapeutic modality for glioblastoma.
Cancer Letters | 2013
Xun Jin; Xiong Jin; Young Woo Sohn; Jinlong Yin; Sung Hak Kim; Kaushal Joshi; Do Hyun Nam; Ichiro Nakano; Hyunggee Kim
Aberrant epidermal growth factor receptor (EGFR) signaling is a typical oncogenic signature in glioblastoma. Here, we show that EGFR inhibition in primary glioma stem cells (GSCs) with oncogenic EGFRvIII and EGFRvIII-transduced glioma stem-like cells promotes invasion by decreasing ID3 levels. ID3 suppresses GSC invasiveness by inhibiting p27(KIP1)-RhoA-dependent migration and MMP3 expression. Xenograft and human glioblastoma specimens show that ID3 localizes within glioblastoma cores, whereas p27(KIP1) and MMP3 are predominantly expressed in glioma cells in invasive fronts. Together, our findings show that EGFR inhibition induces GSC invasiveness by abolishing ID3-mediated inhibition of p27(KIP1) and MMP3 expression.
PLOS ONE | 2014
Mutsuko Minata; Chunyu Gu; Kaushal Joshi; Mariko Nakano-Okuno; Christopher S. Hong; Chi Hung Nguyen; Harley I. Kornblum; Annie Molla; Ichiro Nakano
Glioblastoma multiforme (GBM) is a highly lethal brain tumor. Due to resistance to current therapies, patient prognosis remains poor and development of novel and effective GBM therapy is crucial. Glioma stem cells (GSCs) have gained attention as a therapeutic target in GBM due to their relative resistance to current therapies and potent tumor-initiating ability. Previously, we identified that the mitotic kinase maternal embryonic leucine-zipper kinase (MELK) is highly expressed in GBM tissues, specifically in GSCs, and its expression is inversely correlated with the post-surgical survival period of GBM patients. In addition, patient-derived GSCs depend on MELK for their survival and growth both in vitro and in vivo. Here, we demonstrate evidence that the role of MELK in the GSC survival is specifically dependent on its kinase activity. With in silico structure-based analysis for protein-compound interaction, we identified the small molecule Compound 1 (C1) is predicted to bind to the kinase-active site of MELK protein. Elimination of MELK kinase activity was confirmed by in vitro kinase assay in nano-molar concentrations. When patient-derived GSCs were treated with C1, they underwent mitotic arrest and subsequent cellular apoptosis in vitro, a phenotype identical to that observed with shRNA-mediated MELK knockdown. In addition, C1 treatment strongly induced tumor cell apoptosis in slice cultures of GBM surgical specimens and attenuated growth of mouse intracranial tumors derived from GSCs in a dose-dependent manner. Lastly, C1 treatment sensitizes GSCs to radiation treatment. Collectively, these data indicate that targeting MELK kinase activity is a promising approach to attenuate GBM growth by eliminating GSCs in tumors.