Kaushik Kundu
Indian Statistical Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaushik Kundu.
Journal of Colloid and Interface Science | 2013
Soumik Bardhan; Kaushik Kundu; Swapan K. Saha; Bidyut K. Paul
The present study is focused on evaluation of interfacial compositions and thermodynamic properties of w/o mixed surfactant [(sodium dodecylsulfate, SDS/polyoxyethylene (23) lauryl ether, Brij-35)/1-pentanol (Pn)/isopropyl myristate (IPM)] microemulsions under various physicochemical conditions by the dilution method. The number of moles of Pn at the interface (n(a)(i)) and bulk oil (n(a)(o)), and various thermodynamic parameters [viz. standard Gibbs free energy (ΔG(o→i)(0)), standard enthalpy (ΔH(o→i)(0)), and standard entropy (ΔS(o→i)(0)) of the transfer of Pn from bulk oil to the interface] have been found to be dependent on the molar ratio of water to surfactant (ω), concentration of Brij-35 (X(Brij-35)), and temperature. Temperature-insensitive microemulsions with zero specific heat capacity (ΔC(p)(0))(o→i) have been formed at specific compositions. The intrinsic enthalpy change of the transfer process (ΔH(0))(o→i)* has been evaluated from linear correlation between ΔH(o→i)(0) and ΔS(o→i)(0) at different experimental temperatures. The present report also aims at a precise characterization on the basis of molecular interactions between the constituents and provides insight into the nature of the oil/water interfaces of these systems by conductivity and dynamic light scattering studies as a function of ω and X(Brij-35). Conductivity studies reveal that incorporation of Brij-35 in non-percolating water/SDS/Pn/IPM systems makes them favorable for ω-induced percolation behavior up to X(Brij-35) ≤ 0.5. But further addition of Brij-35 causes a decrease in conductivity with increasing ω. Furthermore, the hydrodynamic diameters of the microemulsion droplets increase with increase in both X(Brij-35) and ω. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.
Journal of Colloid and Interface Science | 2014
Soumik Bardhan; Kaushik Kundu; Sajal Das; Madhumita Poddar; Swapan K. Saha; Bidyut K. Paul
HYPOTHESIS Modification of the interface by blending of surfactants produces considerable changes in the elastic rigidity of the interface, which in turn affects the physicochemical properties of w/o microemulsions. Hence, it could be possible to tune the thermodynamic properties, microstructures and antimicrobial activity of microemulsions by using ionic/non-ionic mixed surfactants and polar lipophilic oil, which are widely used in biologically relevant systems. EXPERIMENTS The present report was aimed at precise characterization of mixed cetyltrimethylammonium bromide and polyoxyethylene (23) lauryl ether microemulsions stabilized in 1-pentanol (Pn) and isopropyl myristate at different physicochemical conditions by employing phase studies, the dilution method, conductivity, DLS, FTIR (with HOD probing) and (1)H NMR measurements. Further, microbiological activities at different compositions were examined against two bacterial strains Bacillus subtilis and Escherichia coli at 303 K. FINDINGS The formation of mixed surfactant microemulsions was found to be spontaneous at all compositions, whereas it was endothermic at equimolar composition. FTIR and (1)H NMR measurements showed the existence of bulk-like, bound and trapped water molecules in confined environments. Interestingly, composition dependence of both highest and lowest inhibitory effects was observed against the bacterial strains, whereas similar features in spontaneity of microemulsion formation were also evidenced. These results suggested a close relationship between thermodynamic stability and antimicrobial activities. Such studies on polar lipophilic oil derived mixed surfactant microemulsions have not been reported earlier.
Journal of Colloid and Interface Science | 2012
Kaushik Kundu; Gourhari Guin; Bidyut K. Paul
The present study is focused on the evaluation of the interfacial composition, thermodynamic properties, and structural parameters of water-in-oil mixed surfactant microemulsions [(cetylpyridinium chloride, CPC+polyoxyethylene (20) cetyl ether, Brij-58 or polyoxyethylene (20) stearyl ether, Brij-78)/1-pentanol/n-heptane, or n-decane] under various physicochemical environments by the Schulman method of cosurfactant titration of the oil/water interface. The estimation of the number of moles of 1-pentanol at the interface (n(a)(i)) and bulk oil (n(a)(o)) and its distribution between these two domains at the threshold level of stability have been emphasized. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. n(a)(i),n(a)(i), standard Gibbs free energy (ΔG(t)(0)), standard enthalpy (ΔH(t)(0)), and standard entropy (ΔG(t)(0)) of transfer process have been found to be dependent on the molar ratio of water to surfactant (ω), type of nonionic surfactant and its content (X(Brij-58 or Brij-78)), oil and temperature. A correlation between (ΔH(t)(0)) and (ΔS(t)(0)) is examined at different experimental temperatures. Bulk surfactant composition dependent temperature insensitive microemulsions have been reported. Associated structural parameters, such as droplet dimensions and aggregation number of surfactant and cosurfactant at the droplet interface have been evaluated using a mathematical model after suitable modifications for mixed surfactant systems. In light of these parameters, the prospect of using these microemulsion systems for the synthesis of nanoparticles and the modulation of enzyme activity has been discussed. Correlations of the results in terms of the evaluated physicochemical parameters have been attempted.
Journal of Colloid and Interface Science | 2013
Soumik Bardhan; Kaushik Kundu; Swapan K. Saha; Bidyut K. Paul
In this contribution, we report on a systematic investigation of phase behavior and solubilization of water in water-in-heptane or decane aggregates stabilized by mixtures of polyoxyethylene (20) cetyl ether (Brij-58) and cetyltrimethylammonium bromide (CTAB) surfactants with varying compositions in conjugation with 1-pentanol (Pn) at fixed surfactant(s)/Pn ratio and temperature. Synergism in water solubilization was evidenced by the addition of CTAB to Brij-58 stabilized system in close proximity of equimolar composition in both oils. An attempt has been made to correlate composition dependent water solubilization and volume induced conductivity studies to provide insight into the solubilization mechanism of these mixed systems. Conductivity studies reveal the ascending curve in water solubilization capacity-(Brij-58:CTAB, w/w) profile as the interdroplet interaction branch indicating percolation of conductance and the descending curve is a curvature branch due to the rigidity of the interface in these systems. The microstructure of these systems as a function of surfactant composition has been determined by dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) measurements. FTIR study reveals increase and decrease in relative population of bound and bulk-like water, respectively, with increase in Brij-58:CTAB (w/w). DLS measurements showed that the droplet hydrodynamic diameter (Dh) decreases significantly with the increase in Brij-58:CTAB (w/w). Further, the interfacial composition and energetic parameters for the transfer of Pn from bulk oil to the interface were evaluated by the dilution method. Formation of temperature-insensitive microemulsions and temperature invariant droplet sizes are evidenced in the vicinity of the equimolar composition. The results are interpreted in terms of a proposed mechanism.
Colloid and Polymer Science | 2013
Kaushik Kundu; Bidyut K. Paul
The interfacial composition
RSC Advances | 2014
Barnali Kar; Soumik Bardhan; Kaushik Kundu; Swapan K. Saha; Bidyut K. Paul; Sajal Das
ChemPhysChem | 2017
Somenath Panda; Kaushik Kundu; Siva Umapathy; Ramesh L. Gardas
\left( {n_a^i} \right)
RSC Advances | 2016
Soumik Bardhan; Kaushik Kundu; Barnali Kar; Gulmi Chakraborty; Dibbendu Ghosh; Debayan Sarkar; Sajal Das; Sanjib Senapati; Swapan K. Saha; Bidyut K. Paul
New Journal of Chemistry | 2018
Somenath Panda; Kaushik Kundu; Anusha Basaiahgari; Akhil Pratap Singh; Sanjib Senapati; Ramesh L. Gardas
, thermodynamic properties and structural parameters of the stable water/(SDS + Brij-58 or Brij-78)/1-pentanol/heptane (or decane or isopropyl myristate) have been evaluated under various physicochemical environments by the dilution method. The results showed
Journal of Physical Chemistry B | 2017
Somenath Panda; Kaushik Kundu; Akhil Pratap Singh; Sanjib Senapati; Ramesh L. Gardas