Kaushik Parsha
University of Texas Health Science Center at Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaushik Parsha.
Stroke | 2013
Bing Yang; Elton Migliati; Kaushik Parsha; Krystal Schaar; Xiaopei Xi; Jaroslaw Aronowski; Sean I. Savitz
Background and Purpose— Bone marrow–derived mononuclear cells (MNCs) are an investigational autologous cell-based therapy for acute ischemic stroke. Both intravenous (IV) and intra-arterial (IA) administration routes have been used in clinical trials. However, the route of administration to optimize the effect of MNCs is unknown. In this study, we compared the effect of IV versus IA route of administration of MNCs in the rat stroke model. Methods— Long Evans rats were subjected to transient middle cerebral artery occlusion. At 24 hours after stroke, animals were randomly assigned to receive autologous bone marrow–derived MNCs using either the IV or IA delivery route. IV saline served as control. One million cells/kg (low dose) and 30 million cells/kg (high dose) were assessed. Neurological testing, cavity size, serum cytokines, neuroregenerative end points, and MNC biodistribution were evaluated. Results— High-dose MNCs improved functional recovery, reduced lesion size and proinflammatory cytokines, and increased vessel density and neurogenesis markers compared with saline treatment (P<0.05). However, there were no significant differences between IV and IA MNC-treated groups, although IV MNCs reduced serum interleukin-1&bgr; levels compared with IA MNCs (P<0.05). IA MNCs at high dose led to a greater number of cells in the brain at 1 and 6 hours after injection but not in the lungs and spleen. Low-dose MNCs (by IV or IA) did not improve any functional or structural end point compared with saline. Conclusions— At low and high doses of MNCs, we found that IV or IA achieves similar structural and functional outcomes after stroke.
Cytotherapy | 2014
Patrick J. Hanley; Zhuyong Mei; April G. Durett; Marie da Graca Cabreira-Harrison; Mariola Klis; Wei Li; Yali Zhao; Bing Yang; Kaushik Parsha; Osman Mir; Farhaan Vahidy; Debra D. Bloom; R. Brent Rice; Peiman Hematti; Sean I. Savitz; Adrian P. Gee
BACKGROUND The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host disease, diabetes, ischemic cardiomyopathy and Crohns disease, has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells must be cost-effective, safe and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures and require prolonged culture times. METHODS We evaluated the Quantum Cell Expansion System for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results with a flask-based method currently in clinical trials. RESULTS After only two passages, we were able to expand a mean of 6.6 × 10(8) MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts and adipocytes. The Quantum was able to generate the target cell number of 2.0 × 10(8) cells in an average of 9 fewer days and in half the number of passages required during flask-based expansion. We estimated that the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active. CONCLUSIONS The Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared with flasks. In the Quantum, the risk of contamination is substantially reduced because of the substantial decrease in open procedures.
International Journal of Stroke | 2013
Preeti Sahota; Farhaan Vahidy; Claude Nguyen; Thanh Tung Bui; Bing Yang; Kaushik Parsha; Jennifer Garrett; Arvind B Bambhroliya; Andrew D. Barreto; James C. Grotta; Jaroslaw Aronowski; Mohammad H. Rahbar; Sean I. Savitz
Background In animal models, the spleen contracts after acute ischemic stroke, followed by release of inflammatory cells leading to secondary brain injury. Aims We aim to characterize splenic responses in patients with acute ischemic stroke. Methods In this prospective observational study, we measured daily spleen sizes with abdominal ultrasound in 30 patients with suspected acute ischemic stroke. Splenic ultrasounds were also performed in 20 healthy individuals. Results A generalized estimating equation, longitudinal regression model for adjusted spleen measurements showed the difference between baseline spleen volume (within six-hours of stroke onset) and the volume at the last measured time point (up to seven-days) to be statistically significant (volume difference of 51·9 cm3, P = 0·04). Healthy controls had significantly smaller day-to-day variations; the maximum observed difference in mean spleen volume between any two time points was 9·5 cm3, with the average change over the period of observation being 1·24 cm3. A statistically significant negative association was also observed between the pattern of change of total white blood cell count and spleen volume (P = 0·01). An analysis of individual cases demonstrated possible associations between daily spleen volume changes and clinical course. Conclusions We hypothesize that the spleen may initially contract after ischemic stroke followed by a re-expansion and that it contributes to ischemic brain injury mediated via cellular components. Characterization of the splenic response after stroke and its contribution to cerebral ischemic injury has the potential to provide new opportunities for the development of novel stroke therapies.
Journal of Cerebral Blood Flow and Metabolism | 2016
Farhaan Vahidy; Kaushik Parsha; Mohammad H. Rahbar; MinJae Lee; Thanh Tung Bui; Claude Nguyen; Andrew D. Barreto; Arvind B Bambhroliya; Preeti Sahota; Bing Yang; Jaroslaw Aronowski; Sean I. Savitz
Animal models provide evidence of spleen mediated post-stroke activation of the peripheral immune system. Translation of these findings to stroke patients requires estimation of pre-stroke spleen volume along with quantification of its day-to-day variation. We enrolled a cohort of 158 healthy volunteers and measured their spleen volume over the course of five consecutive days. We also enrolled a concurrent cohort of 158 stroke patients, measured initial spleen volume within 24 h of stroke symptom onset followed by daily assessments. Blood samples for cytokine analysis were collected from a subset of patients. Using data from healthy volunteers, we fit longitudinal quantile regression models to construct gender and body surface area based normograms of spleen volume. We quantified day-to-day variation and defined splenic contraction. Based on our criteria, approximately 40% of stroke patients experienced substantial post-stroke reduction in splenic volume. African Americans, older patients, and patients with past history of stroke have significantly higher odds of post-stroke splenic contraction. All measured cytokine levels were elevated in patients with splenic contraction, with significant differences for interferon gamma, interleukin 6, 10, 12, and 13. Our work provides reference standards for further work, validation of pre-clinical findings, and characterization of patients with post-stroke splenic contraction.
Stem Cells and Development | 2015
Satoshi Suda; Bing Yang; Krystal Schaar; Xiaopei Xi; Jennifer Pido; Kaushik Parsha; Jaroslaw Aronowski; Sean I. Savitz
Autologous bone marrow-derived mononuclear cells (MNCs) are a potential therapy for ischemic stroke. However, the effect of MNCs in intracerebral hemorrhage (ICH) has not been fully studied. In this study, we investigated the effects of autologous MNCs in experimental ICH. ICH was induced by infusion of autologous blood into the left striatum in young and aged male Long Evans rats. Twenty-four hours after ICH, rats were randomized to receive an intravenous administration of autologous MNCs (1 × 10(7) cells/kg) or saline. We examined brain water content, various markers related to the integrity of the neurovascular unit and inflammation, neurological deficit, neuroregeneration, and brain atrophy. We found that MNC-treated young rats showed a reduction in the neurotrophil infiltration, the number of inducible nitric oxide synthase-positive cells, and the expression of inflammatory-related signalings such as the high-mobility group protein box-1, S100 calcium binding protein B, matrix metalloproteinase-9, and aquaporin 4. Ultimately, MNCs reduced brain edema in the perihematomal area compared with saline-treated animals at 3 days after ICH. Moreover, MNCs increased vessel density and migration of doublecortin-positive cells, improved motor functional recovery, spatial learning, and memory impairment, and reduced brain atrophy compared with saline-treated animals at 28 days after ICH. We also found that MNCs reduced brain edema and brain atrophy and improved spatial learning and memory in aged rats after ICH. We conclude that autologous MNCs can be safely harvested and intravenously reinfused in rodent ICH and may improve long-term structural and functional recovery after ICH. The results of this study may be applicable when considering future clinical trials testing MNCs for ICH.
Stem Cells International | 2016
Bing Yang; Kaushik Parsha; Krystal Schaar; Nikunj Satani; Xiaopei Xi; Jaroslaw Aronowski; Sean I. Savitz
The systemic administration of autologous bone marrow (BM) derived mononuclear cells (MNCs) is under investigation as a novel therapeutic modality for the treatment of ischemic stroke. Autologous applications raise the possibility that MNCs could potentially be stored as a banked source. There have been no studies that investigate the effects of cryopreservation of BM-MNCs on their functional abilities in stroke models. In the present study, C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAo) for 60 minutes and then divided into two treatment groups: fresh MNCs versus cryopreserved MNCs. BM-MNCs were collected at 22 hours after MCAo and were stored in liquid nitrogen for 12 months in cryopreserved MNCs group. BM-MNCs cellular viability, composition, and phenotype of the various subpopulations of mice BM-MNCs were evaluated by flow cytometry, and the behavioral recovery of stroke animals was tested with freshly harvested MNCs versus cryopreserved MNCs by corner test and ladder rung test. We found that long-term cryopreservation negatively impacts the cellular viability of bone marrow MNCs. Cryopreservation also alters the cellular composition of various subpopulations within the MNCs. However, despite the changes observed in cryopreserved cells, both fresh and frozen MNCs have similar beneficial effect on behavioral and histological outcomes.
Neurology | 2017
Jude P Savarraj; Kaushik Parsha; Georgene W. Hergenroeder; Liang Zhu; Suhas Bajgur; Sungho Ahn; Kiwon Lee; Tiffany R. Chang; Dong H. Kim; Yin Liu; H. Alex Choi
Objective: To investigate inflammatory processes after aneurysmal subarachnoid hemorrhage (aSAH) with network models. Methods: This is a retrospective observational study of serum samples from 45 participants with aSAH analyzed at multiple predetermined time points: <24 hours, 24 to 48 hours, 3 to 5 days, and 6 to 8 days after aSAH. Concentrations of cytokines were measured with a 41-plex human immunoassay kit, and the Pearson correlation coefficients between all possible cytokine pairs were computed. Systematic network models were constructed on the basis of correlations between cytokine pairs for all participants and across injury severity. Trends of individual cytokines and correlations between them were examined simultaneously. Results: Network models revealed that systematic inflammatory activity peaks at 24 to 48 hours after the bleed. Individual cytokine levels changed significantly over time, exhibiting increasing, decreasing, and peaking trends. Platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, soluble CD40 ligand, and tumor necrosis factor-α (TNF-α) increased over time. Colony-stimulating factor (CSF) 3, interleukin (IL)-13, and FMS-like tyrosine kinase 3 ligand decreased over time. IL-6, IL-5, and IL-15 peaked and decreased. Some cytokines with insignificant trends show high correlations with other cytokines and vice versa. Many correlated cytokine clusters, including a platelet-derived factor cluster and an endothelial growth factor cluster, were observed at all times. Participants with higher clinical severity at admission had elevated levels of several proinflammatory and anti-inflammatory cytokines, including IL-6, CCL2, CCL11, CSF3, IL-8, IL-10, CX3CL1, and TNF-α, compared to those with lower clinical severity. Conclusions: Combining reductionist and systematic techniques may lead to a better understanding of the underlying complexities of the inflammatory reaction after aSAH.
Cytotherapy | 2017
Kaushik Parsha; Osman Mir; Nikunj Satani; Bing Yang; Waldo R. Guerrero; Zhuyong Mei; Chunyan Cai; Peng R. Chen; Adrian P. Gee; Patrick J. Hanley; Jaroslaw Aronowski; Sean I. Savitz
BACKGROUND AIMS Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. METHODS MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. RESULTS Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. DISCUSSION Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration.
Stem Cells and Development | 2015
Jenny Riecke; Katherine M. Johns; Chunyan Cai; Farhaan Vahidy; Kaushik Parsha; Mya C. Schiess; Sean I. Savitz
Multiple studies have been performed to evaluate the effects of mesenchymal stem cells (MSCs) in animal models of Parkinsons disease (PD). We performed a meta-analysis to estimate the treatment effect of unmodified MSCs on behavioral outcomes in preclinical studies of PD. We performed a systematic literature search to identify studies that used behavioral testing to evaluate the treatment effect of unmodified MSCs in PD models. Meta-analysis was used to determine pooled effect size for rotational behavior and limb function, and meta-regression was performed to explore sources of heterogeneity. Twenty-five studies, including three delivery routes, a wide range of doses, and multiple PD models, were examined. Significant improvement was seen in the pooled standardized mean difference (SMD) for both rotational behavior [SMD: 1.24, 95% confidence interval (95% CI): 0.84, 1.64] and limb function (SMD: 0.84, 95% CI: 0.01, 1.66). Using meta-regression, intravenous administration and higher dose had a larger effect on limb function. Treatment with MSCs improves behavioral outcomes in PD models. Our analyses suggest that MSCs could be considered for early-stage clinical trials in the treatment of PD.
Cytokine | 2018
Jude P Savarraj; Mary F. McGuire; Kaushik Parsha; Georgene W. Hergenroeder; Suhas Bajgur; Sungho Ahn; Liang Zhu; Elena Espino; Tiffany R. Chang; Spiros Blackburn; Dong H. Kim; Pramod K. Dash; Huimahn Alex Choi
Background Unregulated inflammatory and thrombotic responses have been proposed to be important causes of early brain injury and worse clinical outcomes after subarachnoid hemorrhage (SAH). Objective We hypothesize that SAH is characterized by an increased inflammatory and thrombotic state and disruption of associations between these states. Methods This is a retrospective cohort study of 60 patients with SAH. 23 patients with unruptured aneurysms (UA) and 77 patients with traumatic brain injury (TBI) were chosen as controls. Plasma cytokine levels were measured using a 41‐plex human immunoassay kit, and cytokine patterns associated with SAH, UA and TBI were identified using statistical and informatics methods. Results SAH was characterized by an increase in several cytokines and chemokines, platelet‐derived factors, and growth factors. Cluster analysis identified several cytokine clusters common in SAH, UA and TBI groups – generally grouped as platelet‐derived, vascular and pro‐inflammatory clusters. In the UA group, the platelet‐derived cluster had an inverse relationship with the inflammatory cluster which was absent in SAH. Additionally, a cluster comprising of growth and colony stimulating factors was unique to SAH. Conclusions A cluster of cytokines involved in growth and colony stimulation was unique to SAH. Negative associations between the thrombotic and inflammatory molecules were observed in UA but not in SAH. Further studies to examine the pathophysiology behind the cluster unique to SAH and the associations between the thrombotic and inflammatory cytokines are required. HighlightsCytokines involved in inflammatory and thrombotic processes are elevated after SAH.Positive correlations between the processes were observed in SAH and UA.Negative correlations between the processes were present in UA but absent in SAH.A growth colony stimulating factor cluster was unique in SAH.