Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaushik Singha is active.

Publication


Featured researches published by Kaushik Singha.


Bioconjugate Chemistry | 2011

Graphene Oxide–Polyethylenimine Nanoconstruct as a Gene Delivery Vector and Bioimaging Tool

Hyun-woo Kim; Ran Namgung; Kaushik Singha; Il-Kwon Oh; Won Jong Kim

Graphene oxide (GO) has attracted an increasing amount of interest because of its potential applications in biomedical fields such as biological imaging, molecular imaging, drug/gene delivery, and cancer therapy. Moreover, GO could be fabricated by modifying its functional groups to impart specific functional or structural attributes. This study demonstrated the development of a GO-based efficient gene delivery carrier through installation of polyethylenimine, a cationic polymer, which has been widely used as a nonviral gene delivery vector. It was revealed that a hybrid gene carrier fabricated by conjugation of low-molecular weight branched polyethylenimine (BPEI) to GO increased the effective molecular weight of BPEI and consequently improved DNA binding and condensation and transfection efficiency. Furthermore, this hybrid material facilitated sensing and bioimaging because of its tunable and intrinsic electrical and optical properties. Considering the extremely high transfection efficiency comparable to that of high-molecular weight BPEI, high cell viability, and its application as a bioimaging agent, the BPEI-GO hybrid material could be extended to siRNA delivery and photothermal therapy.


Accounts of Chemical Research | 2012

Bioreducible polymers for gene silencing and delivery.

Sejin Son; Ran Namgung; Jihoon Kim; Kaushik Singha; Won Jong Kim

Polymeric gene delivery vectors show great potential for the construction of the ideal gene delivery system. These systems harness their ability to incorporate versatile functional traits to overcome most impediments encountered in gene delivery: from the initial complexation to their target-specific release of the therapeutic nucleic acids at the cytosol. Among the numerous multifunctional polymers that have been designed and evaluated as gene delivery vectors, polymers with redox-sensitive (or bioreducible) functional domains have gained great attention in terms of their structural and functional traits. The redox environment plays a pivotal role in sustaining cellular homeostasis and natural redox potential gradients exist between extra- and intracellular space and between the exterior and interior of subcellular organelles. In some cases, researchers have designed the polymeric delivery vectors to exploit these gradients. For example, researchers have taken advantage of the high redox potential gradient between oxidizing extracellular space and the reducing environment of cytosolic compartments by integrating disulfide bonds into the polymer structure. Such polymers retain their cargo in the extracellular space but selectively release the therapeutic nucleic acids in the reducing space within the cytosol. Furthermore, bioreducible polymers form stable complex with nucleic acids, and researchers can fabricate these structures to impart several important features such as site-, timing-, and duration period-specific gene expression. Additionally, the introduction of disulfide bonds within these polymers promotes their biodegradability and limits their cytotoxicity. Many approaches have demonstrated the versatility of bioreducible gene delivery, but the underlying biological rationale of these systems remains poorly understood. The process of disulfide reduction depends on multiple variables in the cellular redox environment. Therefore, the quest to unravel various issues such as the site and time of disulfide bond reduction during the cellular uptake and trafficking have stimulated a number of interesting studies which have employed disulfide compounds with a variety of reducible linkers. Such studies help researchers understand not only how modifications made to disulfides can alter their thiol-disulfide exchange characteristics but also to decipher the effect of the induced changes on the dynamics of the redox environment. This Account discusses current research trends and recent progress in the disulfide chemistry enabling novel and versatile designs of reducible polymeric gene delivery systems. We present strategies for the introduction of disulfide bonds into polymers. These representative examples and their respective outcomes elaborate the benefit and efficiency of disulfides at the individual stages of gene delivery.


Biomaterials | 2010

Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells.

Ran Namgung; Kaushik Singha; Mi Kyung Yu; Sangyong Jon; Yong Sook Kim; Youngkeun Ahn; In-Kyu Park; Won Jong Kim

The work demonstrated the development of thermally cross-linked superparamagnetic nanomaterial which possessed polyethylene glycol moiety and covalently linked branched polyethylenimine (BPEI), and exhibited highly efficient magnetofection even under serum conditioned media. The study showed its high anti-biofouling, cell viability and serum stability and thus revealed a potential magnetic nanoparticle-mediated targeted gene delivery system. This superparamagnetic particle mediated rapid and efficient transfection in primary vascular endothelial cells (HUVEC) successfully inhibits expression of PAI-1 which is responsible for various vascular dysfunctions such as vascular inflammation and atherosclerosis and thereby provides a potential strategy to transfect highly sensitive HUVEC. The sequential steps for the enhanced magnetofection had been studied by monitoring cellular uptake with the aid of confocal microscopy.


Nucleic Acid Therapeutics | 2011

Polymers in Small-Interfering RNA Delivery

Kaushik Singha; Ran Namgung; Won Jong Kim

This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell.


Biomaterials | 2010

Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier

Sejin Son; Kaushik Singha; Won Jong Kim

The work demonstrated development of multifunctional gene carrier which has incorporated reducible moiety, tumor targeting ligands as well as PEG to achieve efficient release of pDNA, enhanced tumor-specificity and long circulation, respectively. In our successful one-pot synthesis of multifunctional polymer, low molecular weight branched polyethylenimine (BPEI) was thiolated with propylene sulfide, and mixed with alpha-Maleimide-omega-N-hydroxysuccinimide ester polyethylene glycol (MAL-PEG-NHS, MW: 5000), and cyclic NGR peptide. The structural elucidation of the cNGR conjugated reducible BPEI containing disulfide bond (BPEI-SS-PEG-cNGR), was done by NMR and GPC study. Complex formation as well as reducible property of the polymer was confirmed by gel retardation assay. In order to achieve efficient tumor targeting, we have used cNGR peptide which is known to bind to CD13 overexpressed in neovasculature endothelial cells. Tumor target-specificity of polymer was established by carrying out competitive inhibition assay with free cNGR peptide. Cellular uptake of polymers was evaluated by confocal laser scanning microscope (CLSM). Finally, addition of free cNGR and buthionine sulfoximine (BSO) reduced transfection efficiency synergistically, which implied that multifunctional polymer-mediated gene transfection took place tumor-specifically and via GSH-dependent pathway.


Journal of Controlled Release | 2011

RVG peptide tethered bioreducible polyethylenimine for gene delivery to brain

Sejin Son; Do Won Hwang; Kaushik Singha; Ji Hoon Jeong; Tae Gwan Park; Dong Soo Lee; Won Jong Kim

The work demonstrated the successful delivery of gene to mouse brain overcoming the blood-brain barrier (BBB) through expedient vector construct having RVG peptide as targeting ligand for neuronal cells. The newly developed delivery vector was designed to impart bioreducibility for greater intracellular pDNA release, higher serum stability and efficient complexing ability by incorporating disulfide linkage, PEG and low molecular weight polyethylenimine, respectively. The physiochemical properties of the polyplex, its cytotoxicity and the in vitro transfection efficiency on Neuro2a cell were studied prior to the successful in vivo study. In vivo fluorescence assay substantiated the permeation of the pDNA loaded polymeric vector through the BBB. The RVG-mediated target-specific cellular uptake of polymeric vector was established conclusively by competitive assay.


Biomaterials | 2013

Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA.

Jinhwan Kim; Juhee Park; Hyun-woo Kim; Kaushik Singha; Won Jong Kim

The work employs carbon dot (CD) which has been emerging as a fluorescent nanomaterial with excellent biocompatibility and perceived as a promising alternative to quantum dot (QD), to monitor the association/dissociation of polymeric carrier/plasmid DNA (pDNA) complex during transfection. To shed light on the underlying post-endosomal events and provide the insight to design rational and efficient gene delivery vector, the adopted strategy exploited the quenching of the fluorescence of CD by Au nanoparticles. The surface of CD and Au was modified with highly cationic polymer, polyethylenimine (PEI) and subsequent treatment with non-labeled pDNA gave rise to quenched delivery complex. High salt concentration triggered the dissociation of the complex with accompanied fluorescence recovery arising due to the increase in distance between CD and Au. The studies revealed the potential of the developed CD-PEI/Au-PEI/pDNA ternary nano-assembly as a highly efficient hybrid transfecting agent with high cell viability under the optimum condition. The changes occurred at the intracellular level during transfection especially post-endosomal step were monitored by fluorescence measurement using fluorescence microscope. This nano-assembly system was found to be very effective at monitoring the carrier/pDNA dissociation in a non-labeled manner, thus provides efficient strategy to study the mechanistic aspect of polymer-mediated pDNA delivery.


Macromolecular Rapid Communications | 2010

pH‐Responsive Polymers as Gene Carriers

In-Kyu Park; Kaushik Singha; Rohidas Arote; Yun-Jaie Choi; Won Jong Kim; Chong-Su Cho

Despite the immense potential of non-viral delivery system in gene therapy its application has been impaired greatly by various impediments having contrasting traits. Therefore it is an absolute necessity to develop some non-viral vectors which are endowed with special characteristics to act differently in intracellular as well as extracellular compartments to surmount these inter-conflicting hurdles. Such smart polymers should serve some specific purposes by adjusting their structural or functional traits under the influence of stimuli such as temperature, light, salt concentration or pH. Among all these stimuli-responsive polymers pH-responsive polymers have attracted major attention and great impetus has been directed towards utilizing the subtle yet significant change in pH value within the cellular compartments. This review is intended to provide a comprehensive account of the development of pH-responsive polymeric vectors based on their structural features and consequent functional attributes to achieve efficient transfection. The underlying modes of actions relating to structure and differential pH environment have also been discussed in this review.


Cancer Gene Therapy | 2012

A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy

Junghong Park; Kaushik Singha; Son S; Jinhwan Kim; Ran Namgung; Chae-Ok Yun; Won Jong Kim

The development of effective treatments that enable many patients suffering from cancer to be successfully cured is highly demanded. Angiogenesis, which is a process for the formation of new capillary blood vessels, has a crucial role in solid tumor progression and the development of metastasis. Antiangiogenic therapy designed to prevent tumor angiogenesis, thereby arresting the growth or spread of tumors, has emerged as a non-invasive and safe option for cancer treatment. Due to the fact that integrin receptors are overexpressed on the surface of angiogenic endothelial cells, various strategies have been made to develop targeted delivery systems for cancer gene therapy utilizing integrin-targeting peptides with an exposed arginine–glycine–aspartate (RGD) sequence. The aim of this review is to summarize the progress and prospect of RGD-functionalized nonviral vectors toward targeted delivery of genetic materials in order to achieve an efficient therapeutic outcome for cancer gene therapy, including antiangiogenic therapy.


Molecular Pharmaceutics | 2009

Synergistic Effect of Low Cytotoxic Linear Polyethylenimine and Multiarm Polyethylene Glycol: Study of Physicochemical Properties and In Vitro Gene Transfection

Ran Namgung; Ji-Hoon Kim; Kaushik Singha; Chun Ho Kim; Won Jong Kim

Novel star-shaped copolymers consisting of multiarm polyethylene glycol and low molecular weight linear polyethylenimines (MAPEG-LPEIs) with a high transfection efficiency and low cytotoxicity were designed and synthesized as nonviral gene delivery carriers. The cationic polymers were prepared by conjugating low molecular weight linear PEI (2.5 kDa) to six-arm PEG-NHS (10 kDa) in two different compositions. Two copolymers, MAPEG-LPEI(3) and MAPEG-LPEI(6) with molecular weights of 17.5 kDa and 25 kDa respectively, were synthesized. The MAPEG-LPEI(3)/pDNA and MAPEG-LPEI(6)/pDNA polyplexes are stably dispersed in aqueous media with a narrowly distributed size range of <200 nm as determined by dynamic light scattering. Furthermore, these polyplexes showed different surface charges depending upon the relative proportion of MAPEG and LPEI. Moreover, these polyplexes can protect pDNA from enzymatic degradation in serum containing media up to 24 h. These polyplexes were able to efficiently transfect luciferase-coded reporter gene into HeLa cancer cells and showed considerable gene transfection efficacy even in 50% serum-conditioned media in vitro. MAPEG-LPEI(6) exhibited higher transfection activity than that of MAPEG-LPEI(3) at the same weight ratios. Furthermore, MAPEG-LPEI/pDNA polyplexes were less toxic than LPEI/pDNA complexes as determined by MTT assay. These favorable results could be attributed to the combined effect of low molecular weight LPEI and multiarm PEG. The special structural features of the multiarm star-shaped central PEG core play an important role in achieving higher transfection efficiency as it imparts higher charge density to polyplexes and prevents the unwanted aggregation of the smaller polyplex particles. These two important factors contributed toward enhanced gene transfection. On the other hand, LPEI provides low cytotoxicity and effective complexation with pDNA in the designed architecture. Therefore it is possible to achieve enhanced gene transfection by using these two components, namely, pivotal multiarm PEG core and LPEI, in optimal ratio as observed in the case of MAPEG-LPEI(6).

Collaboration


Dive into the Kaushik Singha's collaboration.

Top Co-Authors

Avatar

Won Jong Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ran Namgung

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sejin Son

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

In-Kyu Park

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jihoon Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Juhee Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong Keun Han

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Junghong Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seongbong Jo

University of Mississippi

View shared research outputs
Researchain Logo
Decentralizing Knowledge