Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaustubh Thirumalai is active.

Publication


Featured researches published by Kaustubh Thirumalai.


Scientific Data | 2017

A global multiproxy database for temperature reconstructions of the Common Era

Julien Emile-Geay; Nicholas P. McKay; Darrell S. Kaufman; Lucien von Gunten; Jianghao Wang; Nerilie J. Abram; Jason A. Addison; Mark A. J. Curran; Michael N. Evans; Benjamin J. Henley; Zhixin Hao; Belen Martrat; Helen V. McGregor; Raphael Neukom; Gregory T. Pederson; Barbara Stenni; Kaustubh Thirumalai; Johannes P. Werner; Chenxi Xu; Dmitry Divine; Bronwyn C. Dixon; Joëlle Gergis; Ignacio A. Mundo; Takeshi Nakatsuka; Steven J. Phipps; Cody C. Routson; Eric J. Steig; Jessica E. Tierney; Jonathan J. Tyler; Kathryn Allen

Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.


Scientific Reports | 2015

Globigerinoides ruber morphotypes in the Gulf of Mexico: A test of null hypothesis

Kaustubh Thirumalai; Julie N. Richey; Terrence M. Quinn; Richard Z. Poore

Planktic foraminifer Globigerinoides ruber (G. ruber), due to its abundance and ubiquity in the tropical/subtropical mixed layer, has been the workhorse of paleoceanographic studies investigating past sea-surface conditions on a range of timescales. Recent geochemical work on the two principal white G. ruber (W) morphotypes, sensu stricto (ss) and sensu lato (sl), has hypothesized differences in seasonal preferences or calcification depths, implying that reconstructions using a non-selective mixture of morphotypes could potentially be biased. Here, we test these hypotheses by performing stable isotope and abundance measurements on the two morphotypes in sediment trap, core-top, and downcore samples from the northern Gulf of Mexico. As a test of null hypothesis, we perform the same analyses on couplets of G. ruber (W) specimens with attributes intermediate to the holotypic ss and sl morphologies. We find no systematic or significant offsets in coeval ss-sl δ18O, and δ13C. These offsets are no larger than those in the intermediate pairs. Coupling our results with foraminiferal statistical model INFAUNAL, we find that contrary to previous work elsewhere, there is no evidence for discrepancies in ss-sl calcifying depth habitat or seasonality in the Gulf of Mexico.


Nature Communications | 2017

Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

Kaustubh Thirumalai; Pedro N. DiNezio; Yuko Okumura; Clara Deser

In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.


Nature Communications | 2015

Variable Holocene deformation above a shallow subduction zone extremely close to the trench.

Kaustubh Thirumalai; Frederick W. Taylor; Chuan-Chou Shen; Luc L. Lavier; Cliff Frohlich; Laura M. Wallace; Chung Che Wu; Hailong Sun; A. K. Papabatu

Histories of vertical crustal motions at convergent margins offer fundamental insights into the relationship between interplate slip and permanent deformation. Moreover, past abrupt motions are proxies for potential tsunamigenic earthquakes and benefit hazard assessment. Well-dated records are required to understand the relationship between past earthquakes and Holocene vertical deformation. Here we measure elevations and 230Th ages of in situ corals raised above the sea level in the western Solomon Islands to build an uplift event history overlying the seismogenic zone, extremely close to the trench (4–40 km). We find marked spatiotemporal heterogeneity in uplift from mid-Holocene to present: some areas accrue more permanent uplift than others. Thus, uplift imposed during the 1 April 2007 Mw 8.1 event may be retained in some locations but removed in others before the next megathrust rupture. This variability suggests significant changes in strain accumulation and the interplate thrust process from one event to the next.


Paleoceanography | 2016

Constraining past seawater δ18O and temperature records developed from foraminiferal geochemistry

Kaustubh Thirumalai; Terrence M. Quinn; Gianluca Marino

Paired measurements of magnesium-to-calcium ratios (Mg/Ca) and the stable oxygen isotopic composition (δ18O) in foraminifera have significantly advanced our knowledge of the climate system by providing information on past temperature and seawater δ18O (δ18Osw, a proxy for salinity and ice volume). However, multiple sources of uncertainty exist in transferring these downcore geochemical data into quantitative paleoclimate reconstructions. Here, we develop a computational toolkit entitled Paleo-Seawater Uncertainty Solver (PSU Solver) that performs bootstrap Monte Carlo simulations to constrain these various sources of uncertainty. PSU Solver calculates temperature and δ18Osw, and their respective confidence intervals using an iterative approach with user-defined errors, calibrations, and sea-level curves. Our probabilistic approach yields reduced uncertainty constraints compared to theoretical considerations and commonly used propagation exercises. We demonstrate the applicability of PSU Solver for published records covering three timescales: the late Holocene, the last deglaciation, and the last glacial period. We show that the influence of salinity on Mg/Ca can considerably alter the structure and amplitude of change in the resulting reconstruction and can impact the interpretation of paleoceanographic time series. We also highlight the sensitivity of the records to various inputs of sea-level curves, transfer functions, and uncertainty constraints. PSU Solver offers an expeditious yet rigorous approach to test the robustness of past climate variability inferred from paired Mg/Ca-δ18O measurements.


Nature Communications | 2018

Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

Kaustubh Thirumalai; Terrence M. Quinn; Yuko M. Okumura; Julie N. Richey; Judson W. Partin; Richard Z. Poore; Eduardo Moreno-Chamarro

Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.Knowledge of surface-ocean circulation in the Atlantic over the late Holocene is incomplete. Here, the authors show that Atlantic Ocean surface-circulation varied in concert with Western Hemisphere rainfall anomalies on centennial timescales and that this link played an essential role during the Little Ice Age.


The Holocene | 2016

Oyster reef die-offs in stratigraphic record of Corpus Christi Bay, Texas, possibly caused by drought-driven extreme salinity changes

John A. Goff; Lindsey Lugrin; Sean Ps Gulick; Kaustubh Thirumalai; Yuko M. Okumura

An ultra-high resolution acoustic reflection survey within Corpus Christi Bay, Texas, reveals numerous oyster reefs that have died off and been buried by subsequent sedimentation. The die-offs occurred in four temporal clusters, as evidenced by nearly coterminous capping horizons across multiple reef heads. These horizons can be correlated to published, calibrated radiocarbon dates (2-σ uncertainty: ± ~900 years) derived from cored sediments, and placed into the stratigraphic context. The reefs began growing with the initial flooding of the bay at ~9600 ybp. The first die-offs are coincident with the transition from upper bay to open bay environment at ~8140 ybp, with the greatest concentration of die-offs seaward. Subsequent die-offs occurred ~7600, 6870, and 5800 ybp, with a seaward-to-landward progression. These ages appear to either post-date or be concurrent with published periods of accelerated sea level rise of ~1–4 m. However, because bay oysters (Crassostrea virginica) are robust with respect to salinity and depth changes, we cannot directly link die-offs with punctuated sea level rise. We hypothesize instead that reef die-offs are associated with extreme salinity changes caused by droughts, based on observations during the 1950s Texas drought. During that event, bay reefs were colonized by open-ocean species (Crassostrea equestris), which gradually replaced bay oysters progressing seaward to landward in concentration. Subsequent flooding and rapid freshening of the bay caused massive mortality of the colonizing species. These floods also brought abundant fine-grained sedimentation that could bury reefs before they could be recolonized. Such a sequence of events could explain widespread early Holocene, seaward-to-landward oyster reef die-offs during times of more frequent and severe drought conditions. A plausible climatological link exists between periods of low rainfall in Texas and periods of accelerated melting of the polar ice cap, which could explain the evident correlation between reef die-off and sea level rise.


Geochemistry Geophysics Geosystems | 2017

Extreme Monsoon Rainfall Signatures Preserved in the Invasive Terrestrial Gastropod Lissachatina fulica

Prosenjit Ghosh; Ravi Rangarajan; Kaustubh Thirumalai; Fred Naggs

Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability. Plain Language Summary We provide a new way to reconstruct sub-annual rainfall variability using isotope measurements on shells of the invasive Giant African Land Snails in India. We show that these records can preserve signatures of monsoon rainfall extremes. We utilize museum samples of the snails to reconstruct rainfall during 1918.


Isotopes in Environmental and Health Studies | 2014

Stable carbon isotopes in dissolved inorganic carbon: extraction and implications for quantifying the contributions from silicate and carbonate weathering in the Krishna River system during peak discharge

Amzad H. Laskar; Naveen Gandhi; Kaustubh Thirumalai; Madhusudan G. Yadava; R. Ramesh; R. R. Mahajan; Dharmendra Kumar

We present a comparative study of two offline methods, a newly developed method and an existing one, for the measurement of the stable carbon isotopic composition (δ13C) of dissolved inorganic carbon (DIC; δ13CDIC) in natural waters. The measured δ13CDIC values of different water samples, prepared from laboratory Na2CO3, ground and oceanic waters, and a laboratory carbonate isotope standard, are found to be accurate and reproducible to within 0.5 ‰\ (1σ). The extraction of CO2 from water samples by these methods does not require pre-treatment or sample poisoning and can be applied to a variety of natural waters to address carbon cycling in the hydrosphere. In addition, we present a simple method (based on a two-end-member mixing model) to estimate the silicate-weathering contribution to DIC in a river system by using the concentration of DIC and its δ13C. This approach is tested with data from the Krishna River system as a case study, thereby quantifying the contribution of silicate and carbonate weathering to DIC, particularly during peak discharge.


Scientific Data | 2017

Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

Nerilie J. Abram; Nalan Koc; Chenxi Xu; Andrew Lorrey; Quansheng Ge; Xuemei Shao; Vasile Ersek; Alexey Ekaykin; P. Graham Mortyn; Eugene R. Wahl; Rixt de Jong; Trevor J. Porter; Marie-Alexandrine Sicre; Chris S. M. Turney; Elisabeth Isaksson; Marit-Solveig Seidenkrantz; Andrew D. Moy; Mirko Severi; Helen V. McGregor; Johannes P. Werner; Lucien von Gunten; Kristine L. DeLong; Philipp Munz; Steven J. Phipps; Dmitriy V. Ovchinnikov; Nicholas P. McKay; Andre Ernest J. Viau; Anne Hormes; Hans Oerter; Kazuho Horiuchi

PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project.

Collaboration


Dive into the Kaustubh Thirumalai's collaboration.

Top Co-Authors

Avatar

Terrence M. Quinn

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Richard Z. Poore

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gianluca Marino

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Delia W. Oppo

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Judson W. Partin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Julie N. Richey

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge