Kavilan Moodley
University of KwaZulu-Natal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kavilan Moodley.
Physical Review Letters | 2011
Sudeep Das; Blake D. Sherwin; Paula Aguirre; J. W. Appel; J. Richard Bond; C. Sofia Carvalho; Mark J. Devlin; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; John P. Hughes; K. D. Irwin; Jeff Klein; Arthur Kosowsky; Robert H. Lupton; Tobias A. Marriage; Danica Marsden; F. Menanteau; Kavilan Moodley; Michael D. Niemack; Michael R. Nolta; Lyman A. Page; Lucas Parker
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.
The Astrophysical Journal | 2011
Sudeep Das; Tobias A. Marriage; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton; Matt Hilton; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; David H. Hughes
We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ΛCDM cosmological model. At l>3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8σ level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.
Physical Review D | 2000
Martin Bucher; Kavilan Moodley; Neil Turok
We consider the most general primordial cosmological perturbation in a universe filled with photons, baryons, neutrinos, and a hypothetical cold dark matter (CDM) component within the framework of linearized perturbation theory. We present a careful discussion of the different allowed modes, distinguishing modes which are regular at early times, singular at early times, or pure gauge. As well as the familiar growing and decaying adiabatic modes and the baryonic and CDM isocurvature modes, we identify two neutrino isocurvature modes. In the first, the ratio of neutrinos to photons varies spatially but the net density perturbation vanishes. In the second the photon-baryon plasma and the neutrino fluid have a spatially varying relative bulk velocity balanced so that the net momentum density vanishes. Possible mechanisms which could generate the two neutrino isocurvature modes are discussed. If one allows the most general regular primordial perturbation, all quadratic correlators of observables such as the microwave background anisotropy and matter perturbations are completely determined by a
Physical Review Letters | 2011
Blake D. Sherwin; Joanna Dunkley; Sudeep Das; J. W. Appel; J. Richard Bond; C. Sofia Carvalho; Mark J. Devlin; Rolando Dünner; Thomas Essinger-Hileman; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; Adam D. Hincks; Renée Hlozek; John P. Hughes; K. D. Irwin; Jeff Klein; Arthur Kosowsky; Tobias A. Marriage; Danica Marsden; Kavilan Moodley; F. Menanteau; Michael D. Niemack; Michael R. Nolta; Lyman A. Page; Lucas Parker; Erik D. Reese; Benjamin L. Schmitt; Neelima Sehgal
5\ifmmode\times\else\texttimes\fi{}5,
Physical Review D | 2013
Erminia Calabrese; Renée Hlozek; Nick Battaglia; E. S. Battistelli; J. Richard Bond; Jens Chluba; Devin Crichton; Sudeep Das; Mark J. Devlin; Joanna Dunkley; Rolando Dünner; M. Farhang; Megan B. Gralla; Amir Hajian; M. Halpern; Matthew Hasselfield; Adam D. Hincks; K. D. Irwin; Arthur Kosowsky; Thibaut Louis; Tobias A. Marriage; Kavilan Moodley; Laura Newburgh; Michael D. Niemack; Michael R. Nolta; Lyman A. Page; Neelima Sehgal; Blake D. Sherwin; J. L. Sievers; Cristóbal Sifón
real, symmetric matrix-valued function of comoving wave number. In a companion paper we examine prospects for detecting or constraining the amplitudes of the most general allowed regular perturbations using present and future CMB data.
The Astrophysical Journal | 2011
Tobias A. Marriage; Jean Baptiste Juin; Yen-Ting Lin; Danica Marsden; Michael R. Nolta; Bruce Partridge; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Sudeep Das; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton
For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.
Physical Review Letters | 2001
Martin Bucher; Kavilan Moodley; Neil Turok
Erminia Calabrese, Renée A. Hlozek, Nick Battaglia, Elia S. Battistelli, J. Richard Bond, Jens Chluba, Devin Crichton, Sudeep Das, 8 Mark J. Devlin, Joanna Dunkley, Rolando Dünner, Marzieh Farhang, 11 Megan B. Gralla, Amir Hajian, Mark Halpern, Matthew Hasselfield, 12 Adam D. Hincks, Kent D. Irwin, Arthur Kosowsky, Thibaut Louis, Tobias A. Marriage, 2, 15 Kavilan Moodley, Laura Newburgh, Michael D. Niemack, 13, 17 Michael R. Nolta, Lyman A. Page, Neelima Sehgal, Blake D. Sherwin, Jonathan L. Sievers, Cristóbal Sifón, David N. Spergel, Suzanne T. Staggs, Eric R. Switzer, and Edward J. Wollack Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK Dept. of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA Department of Physics, University of Rome ‘Sapienza’, Piazzale Aldo Moro 5, I-00185 Rome, Italy CITA, University of Toronto, Toronto, ON M5S 3H8, Canada Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686, USA High Energy Physics Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL 60439, USA BCCP, LBL and Department of Physics, University of California, Berkeley, CA 94720, USA Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia,PA 19104,USA Departamento de Astronomı́a y Astrof́ısica, Pontifićıa Universidad Católica de Chile, Casilla 306, Santiago 22, Chile Department of Astronomy and Astrophysics, University of Toronto, 50 St George , Toronto, ON, M5S 3H4 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305, USA Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544,USA Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa Department of Physics, Cornell University, Ithaca, NY, USA 14853 Physics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794-3800, USA Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, Netherlands NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA
Physical Review D | 2012
Blake D. Sherwin; Sudeep Das; Amir Hajian; Graeme E. Addison; J. Richard Bond; Devin Crichton; Mark J. Devlin; Joanna Dunkley; Megan B. Gralla; M. Halpern; J. Colin Hill; Adam D. Hincks; John P. Hughes; K. M. Huffenberger; Renée Hlozek; Arthur Kosowsky; Thibaut Louis; Tobias A. Marriage; Danica Marsden; Felipe Menanteau; Kavilan Moodley; Michael D. Niemack; Lyman A. Page; Erik D. Reese; Neelima Sehgal; Jon Sievers; Cristóbal Sifón; David N. Spergel; Suzanne T. Staggs; Eric R. Switzer
We report on extragalactic sources detected in a 455 deg2 map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low-redshift X-ray-selected galaxy clusters. Estimates of the radio to millimeter-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α5-20 = –0.07 ± 0.06, α20-148 = –0.39 ± 0.04, and α5-148 = –0.20 ± 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C Sync = (2.8 ± 0.3) × 10–6μK2.
The Astrophysical Journal | 2015
Alexander van Engelen; Blake D. Sherwin; Neelima Sehgal; Graeme E. Addison; Rupert Allison; Nick Battaglia; Francesco De Bernardis; J. Richard Bond; Erminia Calabrese; Kevin Coughlin; Devin Crichton; Rahul Datta; Mark J. Devlin; Joanna Dunkley; Rolando Dünner; Patricio A. Gallardo; Emily Grace; Megan B. Gralla; Amir Hajian; Matthew Hasselfield; S. Henderson; J. Colin Hill; Matt Hilton; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; John P. Hughes; Brian J. Koopman; Arthur Kosowsky; Thibaut Louis
The role of cosmic microwave background polarization data in constraining the presence of primordial isocurvature modes is examined. While MAP will be unable to simultaneously constrain isocurvature modes and cosmological parameters, PLANCK will set strong limits on isocurvature modes. If one allows isocurvature modes, the recently obtained BOOMERANG measurement of the curvature of the Universe fails. However, a comparably sensitive polarization measurement on the same angular scales will permit a determination of the curvature without the prior assumption of adiabaticity.
Journal of Cosmology and Astroparticle Physics | 2014
Erminia Calabrese; Renée Hlozek; Nick Battaglia; J. Richard Bond; Francesco De Bernardis; Mark J. Devlin; Amir Hajian; S. Henderson; J. Colin Hil; Arthur Kosowsky; Thibaut Louis; Jeff McMahon; Kavilan Moodley; Laura Newburgh; Michael D. Niemack; Lyman Alexander Page; Bruce Partridge; Neelima Sehgal; J. L. Sievers; David N. Spergel; Suzanne T. Staggs; Eric R. Switzer; Hy Trac; Edward J. Wollack
We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.