Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kavin Fatehchand is active.

Publication


Featured researches published by Kavin Fatehchand.


Frontiers in Cellular and Infection Microbiology | 2012

MiR-155 Induction by Microbes/Microbial Ligands Requires NF-κB-Dependent de novo Protein Synthesis

Thomas J. Cremer; Kavin Fatehchand; Prexy Shah; Devyn D. Gillette; Hemal Patel; Rachel L. Marsh; Beth Y. Besecker; Murugesan V. S. Rajaram; Estelle Cormet-Boyaka; Thirumala-Devi Kanneganti; Larry S. Schlesinger; Jonathan P. Butchar; Susheela Tridandapani

MiR-155 regulates numerous aspects of innate and adaptive immune function. This miR is induced in response to Toll-like receptor ligands, cytokines, and microbial infection. We have previously shown that miR-155 is induced in monocytes/macrophages infected with Francisella tularensis and suppresses expression of the inositol phosphatase SHIP to enhance activation of the PI3K/Akt pathway, which in turn promotes favorable responses for the host. Here we examined how miR-155 expression is regulated during infection. First, our data demonstrate that miR-155 can be induced through soluble factors of bacterial origin and not the host. Second, miR-155 induction is not a direct effect of infection and it requires NF-κB signaling to up-regulate fos/jun transcription factors. Finally, we demonstrate that the requirement for NF-κB-dependent de novo protein synthesis is globally shared by microbial ligands and live bacteria. This study provides new insight into the complex regulation of miR-155 during microbial infection.


Journal of Biological Chemistry | 2016

Analysis of the Effects of the Bruton's tyrosine kinase (Btk) Inhibitor Ibrutinib on Monocyte Fcγ Receptor (FcγR) Function.

Li Ren; Amanda Campbell; Huiqing Fang; Shalini Gautam; Saranya Elavazhagan; Kavin Fatehchand; Payal Mehta; Andrew Stiff; Brenda F. Reader; Xiaokui Mo; John C. Byrd; William E. Carson; Jonathan P. Butchar; Susheela Tridandapani

The irreversible Brutons tyrosine kinase (Btk) inhibitor ibrutinib has shown efficacy against B-cell tumors such as chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma. Fcγ receptors (FcγR) on immune cells such as macrophages play an important role in tumor-specific antibody-mediated immune responses, but many such responses involve Btk. Here we tested the effects of ibrutinib on FcγR-mediated activities in monocytes. We found that ibrutinib did not affect monocyte FcγR-mediated phagocytosis, even at concentrations higher than those achieved physiologically, but suppressed FcγR-mediated cytokine production. We confirmed these findings in macrophages from Xid mice in which Btk signaling is defective. Because calcium flux is a major event downstream of Btk, we tested whether it was involved in phagocytosis. The results showed that blocking intracellular calcium flux decreased FcγR-mediated cytokine production but not phagocytosis. To verify this, we measured activation of the GTPase Rac, which is responsible for actin polymerization. Results showed that ibrutinib did not inhibit Rac activation, nor did the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl ester). We next asked whether the effect of ibrutinib on monocyte FcγR-mediated cytokine production could be rescued by IFNγ priming because NK cells produce IFNγ in response to antibody therapy. Pretreatment of monocytes with IFNγ abrogated the effects of ibrutinib on FcγR-mediated cytokine production, suggesting that IFNγ priming could overcome this Btk inhibition. Furthermore, in monocyte-natural killer cell co-cultures, ibrutinib did not inhibit FcγR-mediated cytokine production despite doing so in single cultures. These results suggest that combining ibrutinib with monoclonal antibody therapy could enhance chronic lymphocytic leukemia cell killing without affecting macrophage effector function.


Journal of Immunology | 2015

Granzyme B Expression Is Enhanced in Human Monocytes by TLR8 Agonists and Contributes to Antibody-Dependent Cellular Cytotoxicity

Saranya Elavazhagan; Kavin Fatehchand; Vikram Santhanam; Huiqing Fang; Li Ren; Shalini Gautam; Brenda F. Reader; Xiaokui Mo; Carolyn Cheney; Edward L. Briercheck; John P. Vasilakos; Gregory N. Dietsch; Robert M. Hershberg; Michael A. Caligiuri; John C. Byrd; Jonathan P. Butchar; Susheela Tridandapani

FcγRs are critical mediators of mAb cancer therapies, because they drive cytotoxic processes upon binding of effector cells to opsonized targets. Along with NK cells, monocytes are also known to destroy Ab-coated targets via Ab-dependent cellular cytotoxicity (ADCC). However, the precise mechanisms by which monocytes carry out this function have remained elusive. In this article, we show that human monocytes produce the protease granzyme B upon both FcγR and TLR8 activation. Treatment with TLR8 agonists elicited granzyme B and also enhanced FcγR-mediated granzyme B production in an additive fashion. Furthermore, monocyte-mediated ADCC against cetuximab-coated tumor targets was enhanced by TLR8 agonist treatment, and this enhancement of ADCC required granzyme B. Hence we have identified granzyme B as an important mediator of FcγR function in human monocytes and have uncovered another mechanism by which TLR8 agonists may enhance FcγR-based therapies.


Journal of Biological Chemistry | 2013

Toll-like Receptor 2 Ligands Regulate Monocyte Fcγ Receptor Expression and Function

Prexy Shah; Kavin Fatehchand; Hemal H. Patel; Huiqing Fang; Steven E. Justiniano; Xiaokui Mo; David Jarjoura; Susheela Tridandapani; Jonathan P. Butchar

Background: Toll-like receptors recognize bacterial components, leading to immune activation. Results: TLR2 ligands alter monocyte/macrophage FcγR and phosphatase expression to improve function both in vitro and in vivo. Conclusion: TLR2 ligands enhance monocyte/macrophage function. Significance: FcγR function is critical for antibody therapy. Deciphering the effect of TLR2 ligands provides a potential means to enhance therapy. Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.


Journal of Biological Chemistry | 2013

Fcγ Receptor-induced Soluble Vascular Endothelial Growth Factor Receptor-1 (VEGFR-1) Production Inhibits Angiogenesis and Enhances Efficacy of Anti-tumor Antibodies

Steven E. Justiniano; Saranya Elavazhagan; Kavin Fatehchand; Prexy Shah; Payal Mehta; Julie M. Roda; Xiaokui Mo; Carolyn Cheney; Erin Hertlein; Timothy D. Eubank; Clay B. Marsh; Natarajan Muthusamy; Jonathan P. Butchar; John C. Byrd; Susheela Tridandapani

Background: FcγR are critical for antibody therapy. Results: Monocyte FcγR activation leads to production of sFlt-1 that inhibits angiogenesis in vitro and tumor growth in vivo. This production is negatively regulated by miR-181a. Conclusion: FcγR lead to production of biologically active sFlt-1, which has antitumor functions. Significance: This finding represents a novel antitumor mechanism of antibodies. Monocytes/macrophages are potent mediators of antitumor antibody therapy, where they engage target cells via Fcγ receptors (FcγR). Binding of these cells to opsonized tumor targets elicits cytokine production, phagocytosis, and antibody-mediated cellular cytotoxicity. Here we show for the first time that activation of monocyte FcγR results in the secretion of soluble vascular endothelial growth factor receptor-1 (VEGFR-1/sFlt-1), which serves to antagonize VEGF-mediated angiogenesis and tumor growth. Consistent with this, using a murine solid tumor model of antibody therapy, we show that sFlt-1 is involved in restricting tumor growth. Analyzing the mechanism of induction of sFlt-1, we found that the Erk and PI3K pathways were required for transcription, and NF-κB was required for translation. Upon closer examination of the role of NF-κB, we found that a microRNA, miR181a, negatively regulates FcγR-mediated sFlt-1 production and that NF-κB serves to antagonize this microRNA. Taken together, these results demonstrate a novel and biologically important function of monocytes and macrophages during antibody therapy.


Frontiers in Cellular and Infection Microbiology | 2014

Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

Devyn D. Gillette; Heather Curry; Thomas J. Cremer; David Ravneberg; Kavin Fatehchand; Prexy Shah; Mark D. Wewers; Larry S. Schlesinger; Jonathan P. Butchar; Susheela Tridandapani; Mikhail A. Gavrilin

Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.


Journal of Biological Chemistry | 2016

Reprogramming nurse-like cells with Interferon-γ to interrupt chronic lymphocytic leukemia cell survival

Shalini Gautam; Kavin Fatehchand; Saranya Elavazhagan; Brenda F. Reader; Li Ren; Xiaokui Mo; John C. Byrd; Susheela Tridandapani; Jonathan P. Butchar

Nurse-like cells (NLCs) play a central role in chronic lymphocytic leukemia (CLL) because they promote the survival and proliferation of CLL cells. NLCs are derived from the monocyte lineage and are driven toward their phenotype via contact-dependent and -independent signals from CLL cells. Because of the central role of NLCs in promoting disease, new strategies to eliminate or reprogram them are needed. Successful reprogramming may be of extra benefit because NLCs express Fcγ receptors (FcγRs) and thus could act as effector cells within the context of antibody therapy. IFNγ is known to promote the polarization of macrophages toward an M1-like state that is no longer tumor-supportive. In an effort to reprogram the phenotype of NLCs, we found that IFNγ up-regulated the M1-related markers CD86 and HLA-DR as well as FcγRIa. This corresponded to enhanced FcγR-mediated cytokine production as well as rituximab-mediated phagocytosis of CLL cells. In addition, IFNγ down-regulated the expression of CD31, resulting in withdrawal of the survival advantage on CLL cells. These results suggest that IFNγ can re-educate NLCs and shift them toward an effector-like state and that therapies promoting local IFNγ production may be effective adjuvants for antibody therapy in CLL.


Journal of Biological Chemistry | 2016

Toll-like Receptor 4 Ligands Down-regulate Fcγ Receptor IIb (FcγRIIb) via MARCH3 Protein-mediated Ubiquitination

Kavin Fatehchand; Li Ren; Saranya Elavazhagan; Huiqing Fang; Xiaokui Mo; John P. Vasilakos; Gregory N. Dietsch; Robert M. Hershberg; Susheela Tridandapani; Jonathan P. Butchar

Monocytes and macrophages are critical for the effectiveness of monoclonal antibody therapy. Responses to antibody-coated tumor cells are largely mediated by Fcγ receptors (FcγRs), which become activated upon binding to immune complexes. FcγRIIb is an inhibitory FcγR that negatively regulates these responses, and it is expressed on monocytes and macrophages. Therefore, deletion or down-regulation of this receptor may substantially enhance therapeutic outcomes. Here we screened a panel of Toll-like receptor (TLR) agonists and found that those selective for TLR4 and TLR8 could significantly down-regulate the expression of FcγRIIb. Upon further examination, we found that treatment of monocytes with TLR4 agonists could lead to the ubiquitination of FcγRIIb protein. A search of our earlier microarray database of monocytes activated with the TLR7/8 agonist R-848 (in which FcγRIIb was down-regulated) revealed an up-regulation of membrane-associated ring finger (C3HC4) 3 (MARCH3), an E3 ubiquitin ligase. Therefore, we tested whether LPS treatment could up-regulate MARCH3 in monocytes and whether this E3 ligase was involved with LPS-mediated FcγRIIb down-regulation. The results showed that LPS activation of TLR4 significantly increased MARCH3 expression and that siRNA against MARCH3 prevented the decrease in FcγRIIb following LPS treatment. These data suggest that activation of TLR4 on monocytes can induce a rapid down-regulation of FcγRIIb protein and that this involves ubiquitination.


PLOS ONE | 2017

Active hexose-correlated compound enhances extrinsic-pathway-mediated apoptosis of Acute Myeloid Leukemic cells

Kavin Fatehchand; Ramasamy Santhanam; Brenda Shen; Ericka L. Erickson; Shalini Gautam; Saranya Elavazhagan; Xiaokui Mo; Tesfaye Belay; Susheela Tridandapani; Jonathan P. Butchar

Active Hexose Correlated Compound (AHCC) has been shown to have many immunostimulatory and anti-cancer activities in mice and in humans. As a natural product, AHCC has potential to create safer adjuvant therapies in cancer patients. Acute Myeloid Leukemia (AML) is the least curable and second-most common leukemia in adults. AML is especially terminal to those over 60 years old, where median survival is only 5 to 10 months, due to inability to receive intensive chemotherapy. Hence, the purpose of this study was to investigate the effects of AHCC on AML cells both in vitro and in vivo. Results showed that AHCC induced Caspase-3-dependent apoptosis in AML cell lines as well as in primary AML leukopheresis samples. Additionally, AHCC induced Caspase-8 cleavage as well as Fas and TRAIL upregulation, suggesting involvement of the extrinsic apoptotic pathway. In contrast, monocytes from healthy donors showed suppressed Caspase-3 cleavage and lower cell death. When tested in a murine engraftment model of AML, AHCC led to significantly increased survival time and decreased blast counts. These results uncover a mechanism by which AHCC leads to AML-cell specific death, and also lend support for the further investigation of AHCC as a potential adjuvant for the treatment of AML.


Journal of Biological Chemistry | 2016

Interferon-γ promotes antibody-mediated fratricide of Acute Myeloid Leukemia cells

Kavin Fatehchand; Elizabeth McMichael; Brenda F. Reader; Huiqing Fang; Ramasamy Santhanam; Shalini Gautam; Saranya Elavazhagan; Payal Mehta; Nathaniel J. Buteyn; Giovanna Merchand-Reyes; Sumithira Vasu; Xiaokui Mo; Don M. Benson; James S. Blachly; William E. Carson; John C. Byrd; Jonathan P. Butchar; Susheela Tridandapani

Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.

Collaboration


Dive into the Kavin Fatehchand's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge