Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kavita Mallya is active.

Publication


Featured researches published by Kavita Mallya.


Nature | 2015

Tumour exosome integrins determine organotropic metastasis.

Ayuko Hoshino; Bruno Costa-Silva; Tang-Long Shen; Goncalo Rodrigues; Ayako Hashimoto; Milica Tesic Mark; Henrik Molina; Shinji Kohsaka; Angela Di Giannatale; Sophia Ceder; Swarnima Singh; Caitlin Williams; Nadine Soplop; Kunihiro Uryu; Lindsay A. Pharmer; Tari A. King; Linda Bojmar; Alexander E. Davies; Yonathan Ararso; Tuo Zhang; Haiying Zhang; Jonathan M. Hernandez; Joshua Mitchell Weiss; Vanessa D. Dumont-Cole; Kimberly Kramer; Leonard H. Wexler; Aru Narendran; Gary K. Schwartz; John H. Healey; Per Sandström

Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


PLOS ONE | 2011

Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility

Michael J. Baine; Subhankar Chakraborty; Lynette M. Smith; Kavita Mallya; Aaron R. Sasson; Randall E. Brand; Surinder K. Batra

Background It is well known that many malignancies, including pancreatic cancer (PC), possess the ability to evade the immune system by indirectly downregulating the mononuclear cell machinery necessary to launch an effective immune response. This knowledge, in conjunction with the fact that the trancriptome of peripheral blood mononuclear cells has been shown to be altered in the context of many diseases, including renal cell carcinoma, lead us to study if any such alteration in gene expression exists in PC as it may have diagnostic utility. Methods and Findings PBMC samples from 26 PC patients and 33 matched healthy controls were analyzed by whole genome cDNA microarray. Three hundred eighty-three genes were found to be significantly different between PC and healthy controls, with 65 having at least a 1.5 fold change in expression. Pathway analysis revealed that many of these genes fell into pathways responsible for hematopoietic differentiation, cytokine signaling, and natural killer (NK) cell and CD8+ T-cell cytotoxic response. Unsupervised hierarchical clustering analysis identified an eight-gene predictor set, consisting of SSBP2, Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20, that could distinguish PC patients from healthy controls with an accuracy of 79% in a blinded subset of samples from treatment naïve patients, giving a sensitivity of 83% and a specificity of 75%. Conclusions In summary, we report the first in-depth comparison of global gene expression profiles of PBMCs between PC patients and healthy controls. We have also identified a gene predictor set that can potentially be developed further for use in diagnostic algorithms in PC. Future directions of this research should include analysis of PBMC expression profiles in patients with chronic pancreatitis as well as increasing the number of early-stage patients to assess the utility of PBMCs in the early diagnosis of PC.


Journal of Cell Science | 2007

Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling

Sumitra Bhattacharya; Ani V. Das; Kavita Mallya; Iqbal Ahmad

ABCG2 belongs to the ATP-binding cassette superfamily of transmembrane proteins and is ubiquitously expressed in stem cells including those in the developing nervous system. The ability of ABCG2 to preferentially exclude DNA-intercalating dyes is regarded to be the basis for the enrichment of stem cells or progenitors as dyelow side population (SP) cells. However, the role of ABCG2 in neural stem cells remains speculative and poorly understood. Here, we demonstrate using retinal stem cells, that ABCG2 is the molecular determinant of SP cell phenotype of neural stem cells and plays an important role in their maintenance. Overexpression of ABCG2 prevents the SP cell phenotype and adversely affects the lineage commitment of retinal stem cells. By contrast, targeted attenuation of ABCG2 depletes retinal SP cells and promotes their differentiation along pan neural and retinal lineages. In addition, we demonstrate for the first time that ABCG2 is a target of Notch signaling, and as such, constitutes one of the genes in the regulatory network of Notch signaling, involved in the maintenance of stem cells.


Stem Cells | 2008

Derivation of Neurons with Functional Properties from Adult Limbal Epithelium: Implications in Autologous Cell Therapy for Photoreceptor Degeneration

Xing Zhao; Ani V. Das; Sumitra Bhattacharya; Wallace B. Thoreson; Jorge Rodriguez–Sierra; Kavita Mallya; Iqbal Ahmad

The limbal epithelium (LE), a circular and narrow epithelium that separates cornea from conjunctiva, harbors stem cells/progenitors in its basal layer that regenerate cornea. We have previously demonstrated that cells in the basal LE, when removed from their niche and cultured in reduced bond morphogenetic protein signaling, acquire properties of neural progenitors. Here, we demonstrate that LE‐derived neural progenitors generate neurons with functional properties and can be directly differentiated along rod photoreceptor lineage in vitro and in vivo. These observations posit the LE as a potential source of neural progenitors for autologous cell therapy to treat photoreceptor degeneration in age‐related macular degeneration and retinitis pigmentosa.


PLOS ONE | 2013

Novel Pancreatic Cancer Cell Lines Derived from Genetically Engineered Mouse Models of Spontaneous Pancreatic Adenocarcinoma: Applications in Diagnosis and Therapy

María P. Torres; Satyanarayana Rachagani; Joshua J. Souchek; Kavita Mallya; Sonny L. Johansson; Surinder K. Batra

Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.


Stem Cells | 2008

Ciliary neurotrophic factor-mediated signaling regulates neuronal versus glial differentiation of retinal stem cells/progenitors by concentration-dependent recruitment of mitogen-activated protein kinase and Janus kinase-signal transducer and activator of transcription pathways in conjunction with Notch signaling.

Sumitra Bhattacharya; Ani V. Das; Kavita Mallya; Iqbal Ahmad

In the retina, as elsewhere in the central nervous system, neurogenesis precedes gliogenesis; that is, the only glia in the retina, Müller cells, are born when the majority of neurons have already been generated. However, our understanding of how the multipotent retinal stem cells/progenitors choose to differentiate along neuronal and glial lineages is unclear. This information is important in promoting directed differentiation of retinal stem cells/progenitors in an ex vivo or in vivo stem cell approach to treating degenerative retinal diseases. Here, using the neurosphere assay, we demonstrate that ciliary neurotrophic factor (CNTF), acting in a concentration‐dependent manner, influences the simultaneous differentiation of retinal stem cells/progenitors into neurons or glia. At low CNTF concentrations differentiation of bipolar cells is promoted, whereas high CNTF concentrations facilitate Müller cell differentiation. The two concentrations of CNTF lead to differential activation of mitogen‐activated protein kinase and Janus kinase‐signal transducer and activator of transcription (Jak‐STAT) pathways, with recruitment of the former and the latter for the differentiation of bipolar and Müller cells, respectively. The concentration‐dependent recruitment of two disparate pathways toward neurogenesis and gliogenesis occurs in concert with Notch signaling. Furthermore, we demonstrate that the attenuation of Jak‐STAT signaling along with Notch signaling facilitates the differentiation of retinal stem cells/progenitors along the rod photoreceptor lineage in vivo. Our observations posit CNTF‐mediated signaling as a molecular switch for neuronal versus glial differentiation of retinal stem cells/progenitors and a molecular target for directed neuronal differentiation of retinal stem cells/progenitors as an approach to addressing degenerative changes in the retina.


PLOS ONE | 2013

Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer

Sukhwinder Kaur; Subhankar Chakraborty; Michael J. Baine; Kavita Mallya; Lynette M. Smith; Aaron R. Sasson; Randall E. Brand; Sushovan Guha; Maneesh Jain; Uwe A. Wittel; Shailender Singh; Surinder K. Batra

Pancreatic cancer (PC) is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s) is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL) and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1) are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91) and compared it with those in healthy control (HC) individuals (n = 24) and patients with chronic pancreatitis (CP, n = 23). The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (± standard deviation, SD) plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2), 219.2 U/mL (7.8) and 4.5 ng/mL (4.1), respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81%) but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively). For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively). CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2) pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml). Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029). Overall, MIC-1 in combination with CA19-9 improved the diagnostic accuracy of differentiating PC from CP and HCs.


Developmental Neuroscience | 2008

The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with notch signaling

Ani V. Das; Sumitra Bhattacharya; Xing Zhao; Ganapati V. Hegde; Kavita Mallya; James D. Eudy; Iqbal Ahmad

The canonical Wnt pathway is known to influence multiple developmental events such as patterning, cell proliferation and cell specification. Recent studies have provided evidence of the involvement of the canonical Wnt pathway in the emergence and development of the optic neuroepithelium and its derivatives, particularly the retina. However, the mechanism of its action during retinal development remains rather obscure. Here, we demonstrate that (in agreement with observations in the blood, intestine, and skin) the canonical Wnt pathway influences retinal development by maintaining stem cells/progenitors. For example, the activation of this pathway keeps the early retinal stem cells/progenitors proliferating and uncommitted, while its attenuation facilitates their differentiation into retinal ganglion cells in vitro and in vivo. In addition, we demonstrate that Wnt signaling acts in concert with Notch signaling during retinal histogenesis, where the latter calibrates the influence of the former on the differentiation status of retinal stem cells/progenitors by regulating Lef1 and sFRP2.


Journal of Biological Chemistry | 2007

SWI/SNF chromatin remodeling ATPase Brm regulates the differentiation of early retinal stem cells/progenitors by influencing Brn3b expression and Notch signaling.

Ani V. Das; Jackson James; Sumitra Bhattacharya; Anthony N. Imbalzano; Marie Lue Antony; Ganapati V. Hegde; Xing Zhao; Kavita Mallya; Faraz Ahmad; Eric Knudsen; Iqbal Ahmad

Based on a variety of approaches, evidence suggests that different cell types in the vertebrate retina are generated by multipotential progenitors in response to interactions between cell intrinsic and cell extrinsic factors. The identity of some of the cellular determinants that mediate such interactions has emerged, shedding light on mechanisms underlying cell differentiation. For example, we know now that Notch signaling mediates the influence of the microenvironment on states of commitment of the progenitors by activating transcriptional repressors. Cell intrinsic factors such as the proneural basic helix-loop-helix and homeodomain transcription factors regulate a network of genes necessary for cell differentiation and maturation. What is missing from this picture is the role of developmental chromatin remodeling in coordinating the expression of disparate classes of genes for the differentiation of retinal progenitors. Here we describe the role of Brm, an ATPase in the SWI/SNF chromatin remodeling complex, in the differentiation of retinal progenitors into retinal ganglion cells. Using the perturbation of expression and function analyses, we demonstrate that Brm promotes retinal ganglion cell differentiation by facilitating the expression and function of a key regulator of retinal ganglion cells, Brn3b, and the inhibition of Notch signaling. In addition, we demonstrate that Brm promotes cell cycle exit during retinal ganglion cell differentiation. Together, our results suggest that Brm represents one of the nexus where diverse information of cell differentiation is integrated during cell differentiation.


Clinical Cancer Research | 2014

MUC4-Mediated Regulation of Acute Phase Protein Lipocalin 2 through HER2/AKT/NF-κB Signaling in Pancreatic Cancer

Sukhwinder Kaur; Neil Sharma; Shiv Ram Krishn; Imay Lakshmanan; Satyanarayana Rachagani; Michael J. Baine; Lynette M. Smith; Subodh M. Lele; Aaron R. Sasson; Sushovan Guha; Kavita Mallya; Judy M. Anderson; Michael A. Hollingsworth; Surinder K. Batra

Purpose: MUC4 shows aberrant expression in early pancreatic lesions and a high specificity for pancreatic cancer. It thus has a high potential to be a sensitive and specific biomarker. Unfortunately, its low serum level limits its diagnostic/prognostic potential. We here report that a multifaceted acute phase protein lipocalin 2, regulated by MUC4, could be a potential diagnostic/prognostic marker for pancreatic cancer. Experimental Designs and Results: Overexpression/knockdown, luciferase reporter and molecular inhibition studies revealed that MUC4 regulates lipocalin 2 by stabilizing HER2 and stimulating AKT, which results in the activation of NF-κB. Immunohistochemical analyses of lipocalin 2 and MUC4 showed a significant positive correlation between MUC4 and lipocalin 2 in primary, metastatic tissues (Spearman correlation coefficient 0.71, P = 0.002) from rapid autopsy tissue sample from patients with pancreatic cancer as well as in serum and tissue samples from spontaneous KRASG12D mouse pancreatic cancer model (Spearman correlation coefficient 0.98, P < 0.05). Lipocalin 2 levels increased progressively with disease advancement (344.2 ± 22.8 ng/mL for 10 weeks to 3067.2 ± 572.6 for 50 weeks; P < 0.0001). In human pancreatic cancer cases, significantly elevated levels of lipocalin 2 were observed in patients with pancreatic cancer (148 ± 13.18 ng/mL) in comparison with controls (73.27 ± 4.9 ng/mL, P = 0.014). Analyses of pre- and postchemotherapy patients showed higher lipocalin 2 levels in prechemotherapy patients [121.7 ng/mL; 95% confidence interval (CI), 98.1–150.9] in comparison with the postchemotherapy (92.6 ng/mL; 95% CI, 76.7–111.6; P = 0.06) group. Conclusions: This study delineates the association and the downstream mechanisms of MUC4-regulated elevation of lipocalin-2 (via HER2/AKT/NF-κB) and its clinical significance for prognosis of pancreatic cancer. Clin Cancer Res; 20(3); 688–700. ©2013 AACR.

Collaboration


Dive into the Kavita Mallya's collaboration.

Top Co-Authors

Avatar

Surinder K. Batra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Maneesh Jain

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ani V. Das

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Iqbal Ahmad

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satyanarayana Rachagani

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sukhwinder Kaur

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sumitra Bhattacharya

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lynette M. Smith

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

I. Ahmad

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge