Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kawal S. Rhode is active.

Publication


Featured researches published by Kawal S. Rhode.


The Lancet | 2003

Cardiac catheterisation guided by MRI in children and adults with congenital heart disease

Reza Razavi; Derek L. G. Hill; Stephen Keevil; Marc Miquel; Vivek Muthurangu; Sanjeet Hegde; Kawal S. Rhode; Michael Barnett; Joop J. van Vaals; David J. Hawkes; Edward Baker

BACKGROUND Fluoroscopically guided cardiac catheterisation is an essential tool for diagnosis and treatment of congenital heart disease. Drawbacks include poor soft tissue visualisation and exposure to radiation. We describe the first 16 cases of a novel method of cardiac catheterisation guided by MRI with radiographic support. METHODS In our cardiac catheterisation laboratory, we combine magnetic resonance and radiographic imaging facilities. We used MRI to measure flow and morphology, and real-time MRI sequences to visualise balloon angiographic catheters. 12 patients underwent diagnostic cardiac catheterisation, two had interventional cardiac catheterisations, and for two patients, MRI was used to plan radiofrequency ablation for treatment of tachyarrhythmias. FINDINGS In 14 patients, some or all of the cardiac catheterisation was guided by MRI. In two patients undergoing radiofrequency ablation, catheters were manipulated with use of fluoroscopic guidance and outcome was assessed with MRI. All patients received lower amounts of radiation than controls. There was some discrepancy between pulmonary vascular resistance calculated by flow derived from MRI and the traditional Fick method. We were able to superimpose fluoroscopic images of electro physiology electrode catheters on the three dimensional MRI of the cardiac anatomy. INTERPRETATION We have shown that cardiac catheterisation guided by MRI is safe and practical in a clinical setting, allows better soft tissue visualisation, provides more pertinent physiological information, and results in lower radiation exposure than do fluoroscopically guided procedures. MRI guidance could become the method of choice for diagnostic cardiac catheterisation in patients with congenital heart disease, and an important tool in interventional cardiac catheterisation and radiofrequency ablation.


Jacc-cardiovascular Imaging | 2013

Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy

Valentina O. Puntmann; Tobias Voigt; Zhong Chen; Manuel Mayr; Rashed Karim; Kawal S. Rhode; Ana Pastor; Gerald Carr-White; Reza Razavi; Tobias Schaeffter; Eike Nagel

OBJECTIVES The aim of this study was to examine the value of native and post-contrast T1 relaxation in the differentiation between healthy and diffusely diseased myocardium in 2 model conditions, hypertrophic cardiomyopathy and nonischemic dilated cardiomyopathy. BACKGROUND T1 mapping has been proposed as potentially valuable in the quantitative assessment of diffuse myocardial fibrosis, but no studies to date have systematically evaluated its role in the differentiation of healthy myocardium from diffuse disease in a clinical setting. METHODS Consecutive subjects undergoing routine clinical cardiac magnetic resonance at Kings College London were invited to participate in this study. Groups were based on cardiac magnetic resonance findings and consisted of subjects with known hypertrophic cardiomyopathy (n = 25) and nonischemic dilated cardiomyopathy (n = 27). Thirty normotensive subjects with low pre-test likelihood of cardiomyopathy, not taking any regular medications and with normal cardiac magnetic resonance findings including normal left ventricular mass indexes, served as controls. Single equatorial short-axis slice T1 mapping was performed using a 3-T scanner before and at 10, 20, and 30 minutes after the administration of 0.2 mmol/kg of gadobutrol. T1 values were quantified within the septal myocardium (T1 native), and extracellular volume fractions (ECV) were calculated. RESULTS T1 native was significantly longer in patients with cardiomyopathy compared with control subjects (p < 0.01). Conversely, post-contrast T1 values were significantly shorter in patients with cardiomyopathy at all time points (p < 0.01). ECV was significantly higher in patients with cardiomyopathy compared with controls at all time points (p < 0.01). Multivariate binary logistic regression revealed that T1 native could differentiate between healthy and diseased myocardium with sensitivity of 100%, specificity of 96%, and diagnostic accuracy of 98% (area under the curve 0.99; 95% confidence interval: 0.96 to 1.00; p < 0.001), whereas post-contrast T1 values and ECV showed lower discriminatory performance. CONCLUSIONS This study demonstrates that native and post-contrast T1 values provide indexes with high diagnostic accuracy for the discrimination of normal and diffusely diseased myocardium.


Medical Image Analysis | 2012

Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation.

Maxime Sermesant; Radomir Chabiniok; Phani Chinchapatnam; Tommaso Mansi; Florence Billet; Philippe Moireau; Jean-Marc Peyrat; Kitty Wong; Jatin Relan; Kawal S. Rhode; Matthew Ginks; Pier D. Lambiase; Hervé Delingette; Michel Sorine; Christopher Aldo Rinaldi; Dominique Chapelle; Reza Razavi; Nicholas Ayache

Cardiac resynchronisation therapy (CRT) is an effective treatment for patients with congestive heart failure and a wide QRS complex. However, up to 30% of patients are non-responders to therapy in terms of exercise capacity or left ventricular reverse remodelling. A number of controversies still remain surrounding patient selection, targeted lead implantation and optimisation of this important treatment. The development of biophysical models to predict the response to CRT represents a potential strategy to address these issues. In this article, we present how the personalisation of an electromechanical model of the myocardium can predict the acute haemodynamic changes associated with CRT. In order to introduce such an approach as a clinical application, we needed to design models that can be individualised from images and electrophysiological mapping of the left ventricle. In this paper the personalisation of the anatomy, the electrophysiology, the kinematics and the mechanics are described. The acute effects of pacing on pressure development were predicted with the in silico model for several pacing conditions on two patients, achieving good agreement with invasive haemodynamic measurements: the mean error on dP/dt(max) is 47.5±35mmHgs(-1), less than 5% error. These promising results demonstrate the potential of physiological models personalised from images and electrophysiology signals to improve patient selection and plan CRT.


IEEE Transactions on Medical Imaging | 2010

A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI

Xiahai Zhuang; Kawal S. Rhode; Reza Razavi; David J. Hawkes; Sebastien Ourselin

Magnetic resonance (MR) imaging has become a routine modality for the determination of patient cardiac morphology. The extraction of this information can be important for the development of new clinical applications as well as the planning and guidance of cardiac interventional procedures. To avoid inter- and intra-observer variability of manual delineation, it is highly desirable to develop an automatic technique for whole heart segmentation of cardiac magnetic resonance images. However, automating this process is complicated by the limited quality of acquired images and large shape variation of the heart between subjects. In this paper, we propose a fully automatic whole heart segmentation framework based on two new image registration algorithms: the locally affine registration method (LARM) and the free-form deformations with adaptive control point status (ACPS FFDs). LARM provides the correspondence of anatomical substructures such as the four chambers and great vessels of the heart, while the registration using ACPS FFDs refines the local details using a constrained optimization scheme. We validated our proposed segmentation framework on 37 cardiac MR volumes on the end-diastolic phase, displaying a wide diversity of morphology and pathology, and achieved a mean accuracy of 2.14 ± 0.63 mm (rms surface distance) and a maximal error of 4.31 mm.


IEEE Transactions on Medical Imaging | 2003

Registration and tracking to integrate X-ray and MR images in an XMR Facility

Kawal S. Rhode; Derek L. G. Hill; Philip J. Edwards; John H. Hipwell; Daniel Rueckert; Gerardo I. Sanchez-Ortiz; Sanjeet Hegde; Vithuran Rahunathan; Reza Razavi

We describe a registration and tracking technique to integrate cardiac X-ray images and cardiac magnetic resonance (MR) images acquired from a combined X-ray and MR interventional suite (XMR). Optical tracking is used to determine the transformation matrices relating MR image coordinates and X-ray image coordinates. Calibration of X-ray projection geometry and tracking of the X-ray C-arm and table enable three-dimensional (3-D) reconstruction of vessel centerlines and catheters from bi-plane X-ray views. We can, therefore, combine single X-ray projection images with registered projection MR images from a volume acquisition, and we can also display 3-D reconstructions of catheters within a 3-D or multi-slice MR volume. Registration errors were assessed using phantom experiments. Errors in the combined projection images (two-dimensional target registration error - TRE) were found to be 2.4 to 4.2 mm, and the errors in the integrated volume representation (3-D TRE) were found to be 4.6 to 5.1 mm. These errors are clinically acceptable for alignment of images of the great vessels and the chambers of the heart. Results are shown for two patients. The first involves overlay of a catheter used for invasive pressure measurements on an MR volume that provides anatomical context. The second involves overlay of invasive electrode catheters (including a basket catheter) on a tagged MR volume in order to relate electrophysiology to myocardial motion in a patient with an arrhythmia. Visual assessment of these results suggests the errors were of a similar magnitude to those obtained in the phantom measurements.


IEEE Transactions on Medical Imaging | 2003

Intensity-based 2-D - 3-D registration of cerebral angiograms

John H. Hipwell; Graeme P. Penney; Robert A. McLaughlin; Kawal S. Rhode; Paul E. Summers; Tim C. S. Cox; James V. Byrne; J.A. Noble; David J. Hawkes

We propose a new method for aligning three-dimensional (3-D) magnetic resonance angiography (MRA) with 2-D X-ray digital subtraction angiograms (DSA). Our method is developed from our algorithm to register computed tomography volumes to X-ray images based on intensity matching of digitally reconstructed radiographs (DRRs). To make the DSA and DRR more similar, we transform the MRA images to images of the vasculature and set to zero the contralateral side of the MRA to that imaged with DSA. We initialize the search for a match on a user defined circular region of interest. We have tested six similarity measures using both unsegmented MRA and three segmentation variants of the MRA. Registrations were carried out on images of a physical neuro-vascular phantom and images obtained during four neuro-vascular interventions. The most accurate and robust registrations were obtained using the pattern intensity, gradient difference, and gradient correlation similarity measures, when used in conjunction with the most sophisticated MRA segmentations. Using these measures, 95% of the phantom start positions and 82% of the clinical start positions were successfully registered. The lowest root mean square reprojection errors were 1.3 mm (standard deviation 0.6) for the phantom and 1.5 mm (standard deviation 0.9) for the clinical data sets. Finally, we present a novel method for the comparison of similarity measure performance using a technique borrowed from receiver operator characteristic analysis.


Cardiovascular Research | 2011

Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy

Steven Niederer; Gernot Plank; Phani Chinchapatnam; Matthew Ginks; Pablo Lamata; Kawal S. Rhode; Christopher Aldo Rinaldi; Reza Razavi; Nicolas Smith

AIMS Cardiac resynchronization therapy (CRT) has emerged as one of the few effective and safe treatments for heart failure. However, identifying patients that will benefit from CRT remains controversial. The dependence of CRT efficacy on organ and cellular scale mechanisms was investigated in a patient-specific computer model to identify novel patient selection criteria. METHODS AND RESULTS A biophysically based patient-specific coupled electromechanics heart model has been developed which links the cellular and sub-cellular mechanisms which regulate cardiac function to the whole organ function observed clinically before and after CRT. A sensitivity analysis of the model identified lack of length dependence of tension regulation within the sarcomere as a significant contributor to the efficacy of CRT. Further simulation analysis demonstrated that in the whole heart, length-dependent tension development is key not only for the beat-to-beat regulation of stroke volume (Frank-Starling mechanism), but also the homogenization of tension development and strain. CONCLUSIONS In individuals with effective Frank-Starling mechanism, the length dependence of tension facilitates the homogenization of stress and strain. This can result in synchronous contraction despite asynchronous electrical activation. In these individuals, synchronizing electrical activation through CRT may have minimal benefit.


Circulation-arrhythmia and Electrophysiology | 2012

Acute pulmonary vein isolation is achieved by a combination of reversible and irreversible atrial injury after catheter ablation: evidence from magnetic resonance imaging.

Aruna Arujuna; Rashed Karim; Dennis Caulfield; Benjamin Knowles; Kawal S. Rhode; Tobias Schaeffter; Bernet Kato; Christopher Aldo Rinaldi; Michael Cooklin; Reza Razavi; Mark O'Neill; Jaswinder Gill

Background— Pulmonary vein reconnection after pulmonary vein isolation is common and is usually associated with recurrences of atrial fibrillation. We used cardiac magnetic resonance imaging after radiofrequency ablation to investigate the hypothesis that acute pulmonary vein isolation results from a combination of irreversible and reversible atrial injury. Methods and Results— Delayed enhancement (DE; representing areas of acute tissue injury/necrosis) and T2-weighted (representing tissue water content, including edema) cardiac magnetic resonance scans were performed before, immediately after (acute), and later than 3 months (late) after pulmonary vein isolation in 25 patients with paroxysmal atrial fibrillation undergoing wide-area circumferential ablation. Images were analyzed as pairs of pulmonary veins to quantify the percentage of circumferential antral encirclement composed of DE, T2, and combined DE+T2 signal. Fourteen of 25 patients were atrial fibrillation free at 11-month follow-up (interquartile range, 8–16 months). These patients had higher DE (71±6.0%) and lower T2 signal (72±7.8%) encirclement on the acute scans compared with recurrences (DE, 55±9.1%; T2, 85±6.3%; P<0.05). Patients maintaining sinus rhythm had a lesser decline in DE between acute and chronic scans compared with recurrences (71±6.0% and 60±5.8% versus 55±9.1% and 34±7.3%, respectively). The percentage of encirclement by a combination of DE+T2 was almost similar in both groups on the acute scans (atrial fibrillation free, 89±5.4%; recurrences, 92±4.8%) but different on the chronic scans (60±5.7% versus 34±7.3%). Conclusions— The higher T2 signal on acute scans and greater decline in DE on chronic imaging in patients with recurrences suggest that they have more reversible tissue injury, providing a potential mechanism for pulmonary vein reconnection, resulting in arrhythmia recurrence.


IEEE Transactions on Biomedical Engineering | 2010

3-D Visualization of Acute RF Ablation Lesions Using MRI for the Simultaneous Determination of the Patterns of Necrosis and Edema

Benjamin Knowles; Dennis Caulfield; Michael Cooklin; C. Aldo Rinaldi; Jaswinder Gill; Julian Bostock; Reza Razavi; Tobias Schaeffter; Kawal S. Rhode

Catheter ablation using RF energy is a common treatment for atrial arrhythmias. Although this treatment provides a potential cure, currently, there remains a high proportion of patients returning for repeat ablations. Electrophysiologists have little information to verify that a lesion has been created in the myocardium. Temporary electrical block can be created from edema, which will subside. MRI can visualize acute and chronic ablation lesions using delayed-enhancement techniques. However, the ablation patterns cannot be determined from 2-D images alone. Using the combination of T2-weighted and delayed-enhancement MRI, ablation lesions can be characterized in terms of necrosis and edema. A novel 3-D visualization technique is presented that projects the image intensity due the lesions onto a 3-D cardiac surface, allowing the complete, simultaneous visualization of the delayed-enhancement and T2 -weighted ablation patterns. Results show successful visualization of ablation patterns in 18 patients, and an application of this technique is presented in which electroanatomical mapping systems can be validated by overlaying the acquired ablation points onto the cardiac surfaces and assessing the correlation with the lesion maps.


Medical Image Analysis | 2012

Registration of 3D trans-esophageal echocardiography to x-ray fluoroscopy using image-based probe tracking

Gang Gao; Graeme P. Penney; YingLiang Ma; Nicolas Gogin; Pascal Yves Francois Cathier; Aruna Arujuna; Geraint Morton; Dennis Caulfield; Jaswinder Gill; C. Aldo Rinaldi; Jane Hancock; Simon Redwood; Martyn Thomas; Reza Razavi; Geert Gijsbers; Kawal S. Rhode

Two-dimensional (2D) X-ray imaging is the dominant imaging modality for cardiac interventions. However, the use of X-ray fluoroscopy alone is inadequate for the guidance of procedures that require soft-tissue information, for example, the treatment of structural heart disease. The recent availability of three-dimensional (3D) trans-esophageal echocardiography (TEE) provides cardiologists with real-time 3D imaging of cardiac anatomy. Increasingly X-ray imaging is now supported by using intra-procedure 3D TEE imaging. We hypothesize that the real-time co-registration and visualization of 3D TEE and X-ray fluoroscopy data will provide a powerful guidance tool for cardiologists. In this paper, we propose a novel, robust and efficient method for performing this registration. The major advantage of our method is that it does not rely on any additional tracking hardware and therefore can be deployed straightforwardly into any interventional laboratory. Our method consists of an image-based TEE probe localization algorithm and a calibration procedure. While the calibration needs to be done only once, the GPU-accelerated registration takes approximately from 2 to 15s to complete depending on the number of X-ray images used in the registration and the image resolution. The accuracy of our method was assessed using a realistic heart phantom. The target registration error (TRE) for the heart phantom was less than 2mm. In addition, we assess the accuracy and the clinical feasibility of our method using five patient datasets, two of which were acquired from cardiac electrophysiology procedures and three from trans-catheter aortic valve implantation procedures. The registration results showed our technique had mean registration errors of 1.5-4.2mm and 95% capture range of 8.7-11.4mm in terms of TRE.

Collaboration


Dive into the Kawal S. Rhode's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaswinder Gill

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Cooklin

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge