Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay D. Beharry is active.

Publication


Featured researches published by Kay D. Beharry.


Investigative Ophthalmology & Visual Science | 2013

Hydrogen Peroxide Accumulation in the Choroid During Intermittent Hypoxia Increases Risk of Severe Oxygen-Induced Retinopathy in Neonatal Rats

Kay D. Beharry; Charles L. Cai; Poonam Sharma; Vadim Bronshtein; Gloria B. Valencia; Douglas R. Lazzaro; Jacob V. Aranda

PURPOSE Extremely low gestational age neonates (ELGANs) requiring oxygen therapy often experience frequent episodes of intermittent hypoxia (IH) and are at high risk for severe retinopathy of prematurity (ROP). Using an established model for oxygen-induced retinopathy (OIR), we examined the hypothesis that there is a critical number of daily brief IH episodes which will result in irreversible retinal oxidative damage. METHODS Newborn rats were exposed to increasing daily clustered IH episodes (12% O₂ with 50% O₂) from postnatal day (P) 0 to P7 or P0 to P14, or placed in room air (RA) until P21 following 7- or 14-day IH. RA littermates at P7, P14, and P21 served as controls. A group exposed to constant 50% O₂ (CH) served as a second control. Blood gases, eye opening at P14, retinal, and choroidal oxidative stress and lipid peroxidation (8-isoPGF(2α)), oxidants (H₂O₂) and antioxidants (catalase and SOD), retinal pathology (adenosine diphosphatase (ADPase)-stained retinal flatmounts), and mitochondria-related genes were assessed. RESULTS pO₂ levels were higher with increasing IH episodes and remained elevated during the reoxygenation period. High SO₂ levels were associated with most severe OIR. Levels of all measured biomarkers peaked with six IH episodes and decreased with 8 to 12 episodes. H₂O₂ accumulated in the choroid during the reoxygenation period with irreversible retinal damage. CONCLUSIONS Our data suggest that six is the maximum number of IH episodes that the retina can sustain. Accumulation of H₂O₂ in the choroid may result in high levels being delivered to the entire retina, ultimately resulting in irreversible retinal oxidative damage.


Investigative Ophthalmology & Visual Science | 2015

Exogenous Superoxide Dismutase Mimetic Without Scavenging H2O2 Causes Photoreceptor Damage in a Rat Model for Oxygen-Induced Retinopathy

Shamin Jivabhai Patel; Fayez Bany-Mohammed; Lois McNally; Gloria B. Valencia; Douglas R. Lazzaro; Jacob V. Aranda; Kay D. Beharry

PURPOSE Frequent, brief intermittent episodes of hypoxia (IH) during hyperoxia increase reactive oxygen species in the immature retina with compromised antioxidant systems, thus leading to oxygen-induced retinopathy (OIR). We examined the hypothesis that early exposure to a mimetic of superoxide dismutase (SOD), the first line of defense against oxidative stress, will decrease IH-induced reactive oxygen species (ROS) and prevent severe OIR in our rat model. METHODS To test this hypothesis, newborn rats (P0) were exposed to IH consisting of alternating cycles of 50% O₂ with brief hypoxia (12% O₂) until P14 during which they were treated with a single daily intraperitoneal (IP) dose of MnTBAP (a SOD mimetic) at 1.0, 5.0, or 10.0 mg/kg on P0, P1, and P2. A saline-treated group served as vehicle controls. Groups were analyzed following IH at P14 or allowed to recover in room air (RA) until P21. Control littermates were raised in RA with all conditions identical except for inspired O₂. Ocular assessment of OIR severity, oxidative stress, angiogenesis, antioxidant activity, and oxidative phosphorylation (OXPHOS) were conducted at P14 and P21. RESULTS Collectively, the data show increased oxidative stress and angiogenesis with MnTBAP, which was associated with photoreceptor damage, retinal characteristics consistent with severe OIR, and changes in genes regulating OXPHOS. CONCLUSIONS In the setting of IH, the use of exogenous SOD mimetics must be combined with H₂O₂ scavengers in order to prevent photoreceptor damage and severe OIR.


Prostaglandins & Other Lipid Mediators | 2017

Human retinal endothelial cells and astrocytes cultured on 3-D scaffolds for ocular drug discovery and development

Kay D. Beharry; Charles L. Cai; Gloria B. Valencia; Douglas R. Lazzaro; Arwin M. Valencia; Fabrizio Salomone; Jacob V. Aranda

Topical ocular ketorolac improves the outcomes of severe retinopathy of prematurity and when administered with systemic caffeine, decreases the severity of oxygen-induced retinopathy. We tested the hypothesis that co-cultures of human retinal endothelial cells (HRECs) and human retinal astrocytes (HRAs) on 3-dimensional (3-D) hydrogel scaffolds is a more representative biomimetic paradigm of the blood-retinal-barrier (BRB) than 2-D cultures, and should be utilized for preclinical drug discovery and development. Mono- and co-cultures of HRECs and HRAs were treated with standard doses of ketorolac, ibuprofen, and/or caffeine, and exposed to hyperoxia, intermittent hypoxia (IH), or normoxia on 2-D surfaces or 3-D biodegradable hydrogel scaffolds (AlgiMatrix or Geltrex). Media and cells were collected at 72h post treatment for arachidonic acid metabolites. Cells cultured on 3-D scaffolds exhibited less oxidative stress and variability in drug responses. HRAs enhanced the responses of HRECs to drugs and changes in oxygen environment. PGE2 and PGI2 were the predominant prostanoids produced in response to IH, reflecting COX-2 immunoreactivity. We conclude that HRECs and HRAs co-cultured on 3-D scaffolds may recapitulate drug responses of the dynamic BRB and therefore should be implemented for preclinical ocular drug discovery and development.


Pediatric Clinics of North America | 2017

Non-steroidal Anti-inflammatory Drugs in Newborns and Infants

Jacob V. Aranda; Fabrizio Salomone; Gloria B. Valencia; Kay D. Beharry

Nonsteroidal antiinflammatory drugs (NSAIDs) and acetaminophen are used in young infants and newborns for pain and fever control, patent ductus closure, prevention of intraventricular hemorrhage, and potentially for prevention of retinopathy of prematurity. These drugs inhibit cyclooxygenase 1 (COX-1), COX-2, and peroxidases, thus, blocking prostaglandin (PG) synthesis. PGs are eicosanoids that regulate several physiologic, pathologic, and cellular processes, including vasomotor tone, platelet aggregation, sensitization of neurons to pain, and many molecular events critical to physiologic homeostasis. NSAIDs inhibit caspases and cell death. Increasing knowledge of these molecular entities may allow targeted drug development to prevent or minimize neonatal morbidities.


Reactive Oxygen Species | 2017

MnTBAP or Catalase Is More Protective against Oxidative Stress in Human Retinal Endothelial Cells Exposed to Intermittent Hypoxia than Their Co-Administration (EUK-134)

Michelle Quan; Charles L. Cai; Gloria B. Valencia; Jacob V. Aranda; Kay D. Beharry

Retinopathy of prematurity is a blinding disease that affects extremely low gestational age neonates. Its etiology is due to extrauterinehyperoxia in an immature antioxidant system culminating as oxidative stress on the retina. Our aim is to elucidate the role of pharmacological antioxidants in modulating the biochemical and molecular response of human retinal microvascular endothelial cells (HRECs) exposed to oxidative stress. HRECs were treated with MnTBAP [a superoxide dismutase (SOD) mimetic], catalase, EUK-134 (SOD + catalase), or saline prior to exposure to normoxia (Nx), hyperoxia (Hx), or intermittent hypoxia (IH). Media levels of SOD, catalase, glutathione peroxidase (GPx), 8-isoPGF2α, and H2O2; cellular SOD and catalase; cellular function (migration and tube formation); and antioxidant gene expression were assessed. Pharmacological antioxidants had delayed suppressive effect on 8-isoPGF2α. MnTBAP and catalase were more effective for H2O2 scavenging in the media than co-administration in the form of EUK-134. A delayed response was noted in SOD and catalase media activity in MnTBAP- and catalase-treated cells, respectively in 50% and IH. MnTBAP had progressively increased media GPx in all oxygen conditions. Antioxidants resulted in normal, but more abundant tubulogenesis in IH and Hx. The distinct temporal response to oxidative stress reflected the respective antioxidants potency and catalytic properties. The cell permeability of the antioxidants limited the ability to scavenge intracellular free radicals. The results support that MnTBAP or catalase may be more effective for the prevention of oxidative stress in oxygen-induced retinopathy.


Prostaglandins & Other Lipid Mediators | 2017

Intermittent hypoxia alters dose dependent caffeine effects on renal prostanoids and receptors in neonatal rats

Kay D. Beharry; Charles L. Cai; Kultida Soontarapornchai; Taimur Ahmad; Gloria B. Valencia; Jacob V. Aranda

Caffeine, one of the most commonly prescribed drugs in preterm neonates, is given in standard or suprapharmacologic doses. Although known as a diuretic, its effects in the neonatal kidneys are not well studied. We tested the hypothesis that neonatal intermittent hypoxia (IH) and high caffeine doses (HCD) alter renal regulators of vasomotor tone and water balance. Newborn rats were randomized to room air, hyperoxia, or IH and treated with standard or high caffeine doses; or placebo saline. Renal prostanoids; histopathology; and cyclooxygenase (COX), prostanoid receptor, and aquaporin (AQP) immunoreactivity were determined. HCD in IH caused severe pathological changes in the glomeruli and proximal tubules, consistent with acute kidney injury. This was associated with reductions in anthropometric growth, PGI2, and IP, DP, and AQP-4 immunoreactivity, well as a robust increase in COX-2, suggesting that the use of HCD should be avoided in preterm infants who experience frequent IH episodes.


Growth Hormone & Igf Research | 2018

Intermittent hypoxia suppression of growth hormone and insulin-like growth factor-I in the neonatal rat liver

Charles L. Cai; Taimur Ahmad; Gloria B. Valencia; Jacob V. Aranda; Jiliu Xu; Kay D. Beharry

OBJECTIVES Extremely low gestational age neonates with chronic lung disease requiring oxygen therapy frequently experience fluctuations in arterial oxygen saturation or intermittent hypoxia (IH). These infants are at risk for multi-organ developmental delay, reduced growth, and short stature. The growth hormone (GH)/insulin-like growth factor-I (IGF-1) system, an important hormonal regulator of lipid and carbohydrate metabolism, promotes neonatal growth and development. We tested the hypothesis that increasing episodes of IH delay neonatal growth by influencing the GH/IGF-I axis. DESIGN Newborn rats were exposed to 2, 4, 6, 8, 10, or 12 hypoxic episodes (12% O2) during hyperoxia (50% O2) from P0-P7, P0-P14 (IH), or allowed to recover from P7-P21 or P14-P21 (IHR) in room air (RA). RA littermates at P7, P14, and P21 served as RA controls; and groups exposed to hyperoxia only (50% O2) served as zero IH controls. Histopathology of the liver; hepatic levels of GH, GHBP, IGF-I, IGFBP-3, and leptin; and immunoreactivities of GH, GHR, IGF-I and IGF-IR were determined. RESULTS Pathological findings of the liver, including cellular swelling, steatosis, necrosis and focal sinusoid congestion were seen in IH, and were particularly severe in the P7 animals. Hepatic GH levels were significantly suppressed in the IH groups exposed to 6-12 hypoxic episodes per day and were not normalized during IHR. Deficits in the GH levels were associated with reduced body length and increase body weight during IHR suggesting increased adiposity and catchup fat. Catchup fat was also associated with elevations in GHBP, IGF-I, leptin. CONCLUSIONS IH significantly impairs hepatic GH/IGF-1 signaling during the first few weeks of life, which is likely responsible for hepatic GH resistance, increased body fat, and hepatic steatosis. These hormonal perturbations may contribute to long-term organ and body growth impairment, and metabolic dysfunction in preterm infants experiencing frequent IH and/or apneic episodes.


Experimental Lung Research | 2017

Intravitreal bevacizumab alters type IV collagenases and exacerbates arrested alveologenesis in the neonatal rat lungs

Arwin M. Valencia; Charles L. Cai; Jeffrey J. Tan; Thomas J. Duggan; Gloria B. Valencia; Jacob V. Aranda; Kay D. Beharry

ABSTRACT Purpose/Aim: Intravitreal bevacizumab (Avastin) is an irreversible vascular endothelial growth factor (VEGF) inhibitor used off-label to treat severe retinopathy of prematurity in extremely low gestational age neonates. VEGF and matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) participate in lung maturation. We tested the hypothesis that intravitreal bevacizumab enters the systemic circulation and has long-lasting effects on lung MMPs. Materials and Methods: Neonatal rats were exposed to: (1) hyperoxia (50% O2); (2) intermittent hypoxia (IH) (50% O2 with brief episodes of 12% O2); or (3) room air (RA) from birth (P0) to P14. At P14, the time of eye opening in rats, a single dose of Avastin (0.125 mg) was injected into the vitreous cavity of the left eye. A control group received equivalent volume saline. At P23 and P45, lung MMP-2 and MMP-9, and TIMP-1, and TIMP-2 were assessed in the lungs. Results: At P23, Avastin increased MMP-2, MMP-9, and TIMP-1 levels in the hyperoxia group but decreased TIMP-1 levels in the IH group. The ratios of MMP-2/TIMP-1 and MMP-9/TIMP-1 were significantly elevated at P23 in the IH group treated with Avastin. At P45, the levels of MMP-2 and MMP-9 remained elevated in the hyperoxia and IH groups treated with Avastin, while a rebound increase in TIMP-1 levels was noted in the IH group. Conclusions: Avastin treatment in IH has lasting alterations in the balance between MMPs and their tissue inhibitors. These changes may lead to impaired alveologenesis and tissue damage consistent with bronchopulmonary dysplasia/chronic lung disease.


Reactive Oxygen Species | 2017

Chronic Intermittent Hypoxia Causes Lipid Peroxidation and Altered Phase 1 Drug Metabolizing Enzymes in the Neonatal Rat Liver

Charles L. Cai; Jacob V. Aranda; Gloria B. Valencia; Jiliu Xu; Kay D. Beharry


Journal of Nature and Science | 2018

Impact of Chronic Neonatal Intermittent Hypoxia on Severity of Retinal Damage in a Rat Model of Oxygen-Induced Retinopathy

Kay D. Beharry; Charles L. Cai; Taimur Ahmad; Sibel Guzel; Gloria B. Valencia; Jacob V. Aranda

Collaboration


Dive into the Kay D. Beharry's collaboration.

Top Co-Authors

Avatar

Gloria B. Valencia

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jacob V. Aranda

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Charles L. Cai

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Lazzaro

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Taimur Ahmad

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arwin M. Valencia

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Salomone

Chiesi Farmaceutici S.p.A.

View shared research outputs
Top Co-Authors

Avatar

Ahmad Taimur

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amirfarbod Yazdanyar

SUNY Downstate Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge