Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay Jann is active.

Publication


Featured researches published by Kay Jann.


PLOS ONE | 2010

Topographic Electrophysiological Signatures of fMRI Resting State Networks

Kay Jann; Mara Kottlow; Thomas Dierks; Chris Boesch; Thomas Koenig

Background fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency domain EEG. Methodology/Principal Findings In the present study we report on the topographic association of EEG spectral fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency bands. We found significant differences between covariance maps of the different RSNs and these differences depended on the frequency band. Conclusions/Significance Our data supports the physiological and neuronal origin of the RSNs and substantiates the assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures of underlying distributed neuronal networks.


NeuroImage | 2011

Semantic memory involvement in the default mode network: a functional neuroimaging study using independent component analysis.

Miranka Wirth; Kay Jann; Thomas Dierks; Andrea Federspiel; Roland Wiest; Helge Horn

The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.


Clinical Neurophysiology | 2013

EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease

Keiichiro Nishida; Yosuke Morishima; Masafumi Yoshimura; Toshiaki Isotani; Satoshi Irisawa; Kay Jann; Thomas Dierks; Werner Strik; Toshihiko Kinoshita; Thomas Koenig

OBJECTIVE There are relevant links between resting-state fMRI networks, EEG microstate classes and psychopathological alterations in mental disorders associated with frontal lobe dysfunction. We hypothesized that a certain microstate class, labeled C and correlated with the salience network, was impaired early in frontotemporal dementia (FTD), and that microstate class D, correlated with the frontoparietal network, was impaired in schizophrenia. METHODS We measured resting EEG microstate parameters in patients with mild FTD (n = 18), schizophrenia (n = 20), mild Alzheimers disease (AD; n = 19) and age-matched controls (old n = 19, young n = 18) to investigate neuronal dynamics at the whole-brain level. RESULTS The duration of class C was significantly shorter in FTD than in controls and AD, and the duration of class D was significantly shorter in schizophrenia than in controls, FTD and AD. Transition analysis showed a reversed sequence of activation of classes C and D in FTD and schizophrenia patients compared with that in controls, with controls preferring transitions from C to D, and patients preferring D to C. CONCLUSION The duration and sequence of EEG microstates reflect specific aberrations of frontal lobe functions in FTD and schizophrenia. SIGNIFICANCE This study highlights the importance of subsecond brain dynamics for understanding of psychiatric disorders.


Biological Psychiatry | 2013

Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations.

Jochen Kindler; Philipp Homan; Kay Jann; Andrea Federspiel; Richard Flury; Martinus Hauf; Werner Strik; Thomas Dierks; Daniela Hubl

BACKGROUND Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment. METHODS Thirty patients with schizophrenia or schizoaffective disorder were investigated. Fifteen patients received a 10-day TMS treatment to the left temporoparietal cortex, and 15 received the standard treatment. The stimulation location was chosen according to an individually determined language region determined by a functional magnetic resonance imaging language paradigm, which identified the sensorimotor language area, area Spt (sylvian parietotemporal), as the target region. RESULTS TMS-treated patients showed positive clinical effects, which were indicated by a reduction in AVH scores (p ≤ .001). Cerebral blood flow was significantly decreased in the primary auditory cortex (p ≤ .001), left Brocas area (p ≤ .001), and cingulate gyrus (p ≤ .001). In control subjects, neither positive clinical effects nor cerebral blood flow decreases were detected. The decrease in cerebral blood flow in the primary auditory cortex correlated with the decrease in AVH scores (p ≤ .001). CONCLUSIONS TMS reverses hyperactivity of language regions involved in the emergence of AVH. Area Spt acts as a gateway to the hallucination-generating cerebral network. Successful therapy corresponded to decreased cerebral blood flow in the primary auditory cortex, supporting its crucial role in triggering AVH and contributing to the physical quality of the false perceptions.


NeuroImage | 2010

Association of individual resting state EEG alpha frequency and cerebral blood flow

Kay Jann; Thomas Koenig; Thomas Dierks; Chris Boesch; Andrea Federspiel

Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individuals EEG alpha frequency (IAF) is a putative marker of the subjects state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.


Schizophrenia Bulletin | 2015

Static and Dynamic Characteristics of Cerebral Blood Flow During the Resting State in Schizophrenia

Jochen Kindler; Kay Jann; Philipp Homan; Martinus Hauf; Sebastian Walther; Werner Strik; Thomas Dierks; Daniela Hubl

BACKGROUND The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. METHODS A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. RESULTS Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = -16/-64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). CONCLUSIONS In schizophrenia patients, the posterior hub--which is considered the strongest part of the DMN--showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances.


NeuroImage | 2008

BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis

Kay Jann; Roland Wiest; Martinus Hauf; Klaus Meyer; Chris Boesch; Johannes Mathis; Gerhard Schroth; Thomas Dierks; Thomas Koenig

Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.


Neuropsychobiology | 2012

Semantic network disconnection in formal thought disorder

Helge Horn; Kay Jann; Andrea Federspiel; Sebastian Walther; Roland Wiest; Thomas J. J. Müller; Werner Strik

Background: Structural and functional findings in schizophrenic patients with formal thought disorder (FTD) show abnormalities within left-side semantic areas. The present study investigate the network function of the involved brain regions as a function of FTD severity. Methods: We examined a group of 16 schizophrenia patients differing in FTD, but not in overall symptom severity, and 18 matched healthy controls. A passive word reading paradigm was applied during functional MRI (fMRI). A concatenated independent component analysis approach separated the fMRI signal into independent components, and spatial similarity was used to estimate the individual differences in spatial configuration of networks. Results: The semantic network was identified for both groups encompassing structures of the left inferior frontal gyrus, the left angular gyrus and the left middle temporal gyrus. The differences between the semantic networks of patients and controls increased with increasing severity of FTD. This difference was due to a decreasing contribution of the left inferior frontal gyrus (Brodmann area 45 and 47). Conclusion: Severity of FTD was correlated with a disruption of the left semantic network in schizophrenic patients. We suggest that FTD is a consequence of a frontal-parietal/temporal disconnection due to a complex interaction between structural and functional abnormalities within the left semantic network.


Brain | 2012

Reduced Cerebral Blood Flow Within the Default-Mode Network and Within Total Gray Matter in Major Depression

Ariane Orosz; Kay Jann; Andrea Federspiel; Helge Horn; Oliver Höfle; Thomas Dierks; Roland Wiest; Werner Strik; Thomas J. J. Müller; Sebastian Walther

The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.


Brain | 2015

Characterizing Resting-State Brain Function Using Arterial Spin Labeling.

J. Jean Chen; Kay Jann; Danny J.J. Wang

Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function.

Collaboration


Dive into the Kay Jann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge