Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay M. Brummond is active.

Publication


Featured researches published by Kay M. Brummond.


Journal of the American Chemical Society | 2012

Synthesis and Photophysical Properties of a Series of Cyclopenta[b]naphthalene Solvatochromic Fluorophores

Erica Benedetti; Laura S. Kocsis; Kay M. Brummond

The synthesis and photophysical properties of a series of naphthalene-containing solvatochromic fluorophores are described within. These novel fluorophores are prepared using a microwave-assisted dehydrogenative Diels-Alder reaction of styrene, followed by a palladium-catalyzed cross coupling reaction to install an electron donating amine group. The new fluorophores are structurally related to Prodan. Photophysical properties of the new fluorophores were studied and intriguing solvatochromic behavior was observed. For most of these fluorophores, high quantum yields (60-99%) were observed in methylene chloride in addition to large Stokes shifts (95-226 nm) in this same solvent. As the solvent polarity increased, so did the observed Stokes shift with one derivative displaying a Stokes shift of ~300 nm in ethanol. All fluorophore emission maxima, and nearly all absorption maxima were significantly red-shifted when compared to Prodan. Shifting the absorption and emission maxima of a fluorophore into the visible region increases its utility in biological applications. Moreover, the cyclopentane portion of the fluorophore structure provides an attachment point for biomolecules that will minimize disruptions of the photophysical properties.


Journal of the American Chemical Society | 2010

Differentiating Mechanistic Possibilities for the Thermal, Intramolecular [2 + 2] Cycloaddition of Allene−Ynes

Matthew R. Siebert; Joshua M Osbourn; Kay M. Brummond; Dean J. Tantillo

Intramolecular [2 + 2] cycloaddition reactions of allene-ynes offer a quick and efficient route to fused bicyclic ring structures. Insights into the mechanism and regiochemical preferences of this reaction are provided herein on the basis of the results of quantum chemical calculations (B3LYP/6-31+G(d,p)) and select experiments; both indicate that the reaction likely proceeds through a stepwise diradical pathway where one radical center is stabilized through allylic delocalization. The influences of the length of the tether connecting the alkyne and allene and substituent effects are also discussed.


Organic Letters | 2012

A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes

Laura S. Kocsis; Erica Benedetti; Kay M. Brummond

Functionalized naphthalenes are valuable building blocks in many important areas. A microwave-assisted, intramolecular dehydrogenative Diels-Alder reaction of styrenyl derivatives to provide cyclopenta[b]naphthalene substructures not previously accessible using existing synthetic methods is described. The synthetic utility of these uniquely functionalized naphthalenes was demonstrated by a single-step conversion of one of these cycloadducts to a fluorophore bearing a structural resemblance to Prodan.


Journal of Medicinal Chemistry | 2017

Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions

Paul A. Jackson; John C. Widen; Daniel A. Harki; Kay M. Brummond

Although Michael acceptors display a potent and broad spectrum of bioactivity, they have largely been ignored in drug discovery because of their presumed indiscriminate reactivity. As such, a dearth of information exists relevant to the thiol reactivity of natural products and their analogues possessing this moiety. In the midst of recently approved acrylamide-containing drugs, it is clear that a good understanding of the hetero-Michael addition reaction and the relative reactivities of biological thiols with Michael acceptors under physiological conditions is needed for the design and use of these compounds as biological tools and potential therapeutics. This Perspective provides information that will contribute to this understanding, such as kinetics of thiol addition reactions, bioactivities, as well as steric and electronic factors that influence the electrophilicity and reversibility of Michael acceptors. This Perspective is focused on α,β-unsaturated carbonyls given their preponderance in bioactive natural products.


Journal of Organic Chemistry | 2015

Mechanistic Insight into the Dehydro-Diels–Alder Reaction of Styrene–Ynes

Laura S. Kocsis; Husain N. Kagalwala; Sharlene Mutto; Bhaskar Godugu; Stefan Bernhard; Dean J. Tantillo; Kay M. Brummond

The Diels-Alder reaction represents one of the most thoroughly studied and well-understood synthetic transformations for the assembly of six-membered rings. Although intramolecular dehydro-Diels-Alder (IMDDA) reactions have previously been employed for the preparation of naphthalene and dihydronaphthalene substrates, low yields and product mixtures have reduced the impact and scope of this reaction. Through the mechanistic studies described within, we have confirmed that the thermal IMDDA reaction of styrene-ynes produces a naphthalene product via loss of hydrogen gas from the initially formed cycloadduct, a tetraenyl intermediate. Alternatively, the dihydronaphthalene product is afforded from the same tetraenyl intermediate via a radical isomerization process. Moreover, we have identified conditions that can be used to achieve efficient, high-yielding, and selective IMDDA reactions of styrene-ynes to form either naphthalene or dihydronaphthalene products. The operational simplicity and retrosynthetic orthogonality of this method for the preparation of naphthalenes and dihydronaphthalenes makes this transformation appealing for the synthesis of medicinal and material targets. The mechanistic studies within may impact the development of other thermal transformations.


Journal of Organic Chemistry | 2013

Enantioselective synthesis of 5,7-bicyclic ring systems from axially chiral allenes using a Rh(I)-catalyzed cyclocarbonylation reaction.

Francois Grillet; Kay M. Brummond

A transfer of chirality in an intramolecular Rh(I)-catalyzed allenic Pauson-Khand reaction (APKR) to access tetrahydroazulenones, tetrahydrocyclopenta[c]azepinones and dihydrocyclopenta[c]oxepinones enantioselectively (22-99% ee) is described. The substitution pattern of the allene affected the transfer of chiral information. Complete transfer of chirality was obtained for all trisubstituted allenes, but loss of chiral information was observed for disubstituted allenes. This work constitutes the first demonstration of a transfer of chiral information from an allene to the 5-position of a cyclopentenone using a cyclocarbonylation reaction. The absolute configuration of the corresponding cyclocarbonylation product was also established, something that is rarely done.


Organic Letters | 2014

Intramolecular dehydro-Diels-Alder reaction affords selective entry to arylnaphthalene or aryldihydronaphthalene lignans.

Laura S. Kocsis; Kay M. Brummond

Intramolecular dehydro-Diels–Alder (DDA) reactions are performed affording arylnaphthalene or aryldihydronaphthalene lactones selectively as determined by choice of reaction solvent. This constitutes the first report of an entirely selective formation of arylnaphthalene lactones utilizing DDA reactions of styrene-ynes. The synthetic utility of the DDA reaction is demonstrated by the synthesis of taiwanin C, retrohelioxanthin, justicidin B, isojusticidin B, and their dihydronaphthalene derivatives. Computational methods for chemical shift assignment are presented that allow for regioisomeric lignans to be distinguished.


Journal of the American Chemical Society | 2017

Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric Pauson–Khand Reaction of Allenyl Acetates

Lauren C. Burrows; Luke T. Jesikiewicz; Gang Lu; Steven J. Geib; Peng Liu; Kay M. Brummond

The Rh(I)-catalyzed allenic Pauson-Khand reaction (APKR) is an efficient, redox-neutral method of synthesizing α-acyloxy cyclopentenones. An enantioselective APKR could provide access to chiral, nonracemic α-acyloxy and α-hydroxy cyclopentenones and their corresponding redox derivatives, such as thapsigargin, a cytotoxic natural product with potent antitumor activity. Rapid scrambling of axial chirality of allenyl acetates in the presence of Rh(I) catalysts enables the conversion of racemic allene to enantiopure cyclopentenone product in a dynamic kinetic asymmetric transformation (DyKAT). A combined experimental and computational approach was taken to develop an effective catalytic system to achieve the asymmetric transformation. The optimization of the denticity, and steric and electronic properties of the ancillary ligand (initially (S)-MonoPhos, 58:42 er), afforded a hemilabile bidentate (S)-MonoPhos-alkene-Rh(I) catalyst that provided α-acyloxy cyclopentenone product in up to 14:86 er. Enantioselectivity of the Rh(I)-(S)-MonoPhos-alkene catalyst was rationalized using ligand-substrate steric interactions and distortion energies in the computed transition states. This asymmetric APKR of allenyl acetates is a rare example of a Type I DyKAT reaction of an allene, the first example of DyKAT in a cyclocarbonylation reaction, and the first catalyst-controlled enantioselective APKR.


Organic and Biomolecular Chemistry | 2015

Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors

Laura S. Kocsis; Kristyna M. Elbel; Billie A. Hardigree; Kay M. Brummond; Mark A. Haidekker; Emmanuel A. Theodorakis

We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure.


Cancer Research | 2014

Identification of ATR-Chk1 pathway inhibitors that selectively target p53-deficient cells without directly suppressing ATR catalytic activity

Masaoki Kawasumi; James E. Bradner; Nicola Tolliday; Renee Thibodeau; Heather L. Sloan; Kay M. Brummond; Paul Nghiem

Resistance to DNA-damaging chemotherapy is a barrier to effective treatment that appears to be augmented by p53 functional deficiency in many cancers. In p53-deficient cells in which the G1-S checkpoint is compromised, cell viability after DNA damage relies upon intact intra-S and G2-M checkpoints mediated by the ATR (ataxia telangiectasia and Rad3 related) and Chk1 kinases. Thus, a logical rationale to sensitize p53-deficient cancers to DNA-damaging chemotherapy is through the use of ATP-competitive inhibitors of ATR or Chk1. To discover small molecules that may act on uncharacterized components of the ATR pathway, we performed a phenotype-based screen of 9,195 compounds for their ability to inhibit hydroxyurea-induced phosphorylation of Ser345 on Chk1, known to be a critical ATR substrate. This effort led to the identification of four small-molecule compounds, three of which were derived from known bioactive library (anthothecol, dihydrocelastryl, and erysolin) and one of which was a novel synthetic compound termed MARPIN. These compounds all inhibited ATR-selective phosphorylation and sensitized p53-deficient cancer cells to DNA-damaging agents in vitro and in vivo. Notably, these compounds did not inhibit ATR catalytic activity in vitro, unlike typical ATP-competitive inhibitors, but acted in a mechanistically distinct manner to disable ATR-Chk1 function. Our results highlight a set of novel molecular probes to further elucidate druggable mechanisms to improve cancer therapeutic responses produced by DNA-damaging drugs.

Collaboration


Dive into the Kay M. Brummond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erica Benedetti

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah M. Wells

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Lu

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge