Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay Perry is active.

Publication


Featured researches published by Kay Perry.


Science | 2012

Botulinum neurotoxin is shielded by NTNHA in an interlocked complex.

Shenyan Gu; Sophie Rumpel; Jie Zhou; Jasmin Strotmeier; Hans Bigalke; Kay Perry; Charles B. Shoemaker; Andreas Rummel; Rongsheng Jin

Piercing Botulinums Defense Botulinum neurotoxins (BoNTs) are poisons that cause muscle paralysis. In the acidic intestine, ingested BoNTs are protected within a progenitor toxin complex. The toxins are released on absorption into the neutral bloodstream. Gu et al. (p. 977; see the Perspective by Adler) present the structure of a minimally functional progenitor toxin complex—BoNT in complex with a nontoxic, nonhemagglutinin protein at 2.7 angstrom resolution. The structure, together with biochemical studies, showed how complex assembly is regulated by pH and may be useful in guiding the development of delivery vehicles for oral administration of biologics and in the design of inhibitors for oral BoNT poisoning. Structural and biochemical studies show how a bacterial toxin protects itself against digestion in the gut. Botulinum neurotoxins (BoNTs) are highly poisonous substances that are also effective medicines. Accidental BoNT poisoning often occurs through ingestion of Clostridium botulinum–contaminated food. Here, we present the crystal structure of a BoNT in complex with a clostridial nontoxic nonhemagglutinin (NTNHA) protein at 2.7 angstroms. Biochemical and functional studies show that NTNHA provides large and multivalent binding interfaces to protect BoNT from gastrointestinal degradation. Moreover, the structure highlights key residues in BoNT that regulate complex assembly in a pH-dependent manner. Collectively, our findings define the molecular mechanisms by which NTNHA shields BoNT in the hostile gastrointestinal environment and releases it upon entry into the circulation. These results will assist in the design of small molecules for inhibiting oral BoNT intoxication and of delivery vehicles for oral administration of biologics.


PLOS Pathogens | 2013

Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity.

Kwangkook Lee; Shenyan Gu; Lei Jin; Thi Tuc Nghi Le; Luisa W. Cheng; Jasmin Strotmeier; Anna Magdalena Kruel; Guorui Yao; Kay Perry; Andreas Rummel; Rongsheng Jin

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the fatal disease botulism, a flaccid paralysis of the muscle. BoNTs are released together with several auxiliary proteins as progenitor toxin complexes (PTCs) to become highly potent oral poisons. Here, we report the structure of a ∼760 kDa 14-subunit large PTC of serotype A (L-PTC/A) and reveal insight into its absorption mechanism. Using a combination of X-ray crystallography, electron microscopy, and functional studies, we found that L-PTC/A consists of two structurally and functionally independent sub-complexes. A hetero-dimeric 290 kDa complex protects BoNT, while a hetero-dodecameric 470 kDa complex facilitates its absorption in the harsh environment of the gastrointestinal tract. BoNT absorption is mediated by nine glycan-binding sites on the dodecameric sub-complex that forms multivalent interactions with carbohydrate receptors on intestinal epithelial cells. We identified monosaccharides that blocked oral BoNT intoxication in mice, which suggests a new strategy for the development of preventive countermeasures for BoNTs based on carbohydrate receptor mimicry.


Genes & Development | 2012

Structural basis of agrin–LRP4–MuSK signaling

Yinong Zong; Bin Zhang; Shenyan Gu; Kwangkook Lee; Jie Zhou; Guorui Yao; Dwight Figueiredo; Kay Perry; Lin Mei; Rongsheng Jin

Synapses are the fundamental units of neural circuits that enable complex behaviors. The neuromuscular junction (NMJ), a synapse formed between a motoneuron and a muscle fiber, has contributed greatly to understanding of the general principles of synaptogenesis as well as of neuromuscular disorders. NMJ formation requires neural agrin, a motoneuron-derived protein, which interacts with LRP4 (low-density lipoprotein receptor-related protein 4) to activate the receptor tyrosine kinase MuSK (muscle-specific kinase). However, little is known of how signals are transduced from agrin to MuSK. Here, we present the first crystal structure of an agrin-LRP4 complex, consisting of two agrin-LRP4 heterodimers. Formation of the initial binary complex requires the z8 loop that is specifically present in neuronal, but not muscle, agrin and that promotes the synergistic formation of the tetramer through two additional interfaces. We show that the tetrameric complex is essential for neuronal agrin-induced acetylcholine receptor (AChR) clustering. Collectively, these results provide new insight into the agrin-LRP4-MuSK signaling cascade and NMJ formation and represent a novel mechanism for activation of receptor tyrosine kinases.


Science | 2014

Molecular basis for disruption of e-cadherin adhesion by botulinum neurotoxin a complex

Kwangkook Lee; Xiaofen Zhong; Shenyan Gu; Anna Magdalena Kruel; Martin B. Dorner; Kay Perry; Andreas Rummel; Min Dong; Rongsheng Jin

Breaking through the epithelial barrier Botulinum neurotoxin (BoNT) poisons its host when it crosses the intestinal epithelial barrier. To help it cross this barrier, the toxin forms a large complex with three bacterial proteins called hemagglutinins (HAs). To find out what happens when this complex binds to a cell-adhesion protein called E-cadherin, Lee et al. crystallized the bound complex and protein. Toxin binding disrupted the way E-cadherin maintains the epithelial barrier. When the researchers prevented the toxin complex from binding to E-cadherin, mice were protected from the toxins deadly effects. Science, this issue p. 1405 A crystal structure shows how botulinum neurotoxin crosses the host intestinal epithelial barrier, causing toxicity. How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin–mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin– or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A.


Journal of the American Chemical Society | 2013

Crystal Structure of a Human Prion Protein Fragment Reveals a Motif for Oligomer Formation

Marcin I. Apostol; Kay Perry; Witold K. Surewicz

The structural transition of the prion protein from α-helical- to β-sheet-rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide-bond-linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into a β-sheet-rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates and suggests a possible mechanism for self-propagation of misfolded conformations by such nonamyloid oligomers.


Nature | 2015

Structure of a eukaryotic SWEET transporter in a homotrimeric complex.

Yuyong Tao; Lily S. Cheung; Shuo Li; Joon Seob Eom; Li Qing Chen; Yan Xu; Kay Perry; Wolf B. Frommer; Liang Feng

Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure–function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.


Nature Structural & Molecular Biology | 2016

N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A

Guorui Yao; Sicai Zhang; Stefan Mahrhold; Kwok Ho Lam; Daniel Stern; Karine Bagramyan; Kay Perry; Markus Kalkum; Andreas Rummel; Min Dong; Rongsheng Jin

Botulinum neurotoxin serotype A1 (BoNT/A1), a licensed drug widely used for medical and cosmetic applications, exerts its action by invading motoneurons. Here we report a 2.0-Å-resolution crystal structure of the BoNT/A1 receptor-binding domain in complex with its neuronal receptor, glycosylated human SV2C. We found that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—which is conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and for its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an antibotulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications, thereby achieving highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors.


Structure | 2012

The survival motor neuron protein forms soluble glycine zipper oligomers.

Renee Martin; Kushol Gupta; Nisha S. Ninan; Kay Perry; Gregory D. Van Duyne

The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)₃ motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers, providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.


Biochemical and Biophysical Research Communications | 2014

High-resolution crystal structure of HA33 of botulinum neurotoxin type B progenitor toxin complex.

Kwangkook Lee; Kwok Ho Lam; Anna Magdalena Kruel; Kay Perry; Andreas Rummel; Rongsheng Jin

Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46Å resolution. The structural comparisons among HA33 of serotypes A-D reveal two different HA33-glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B-lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.


Toxins | 2017

Crystal structure of the receptor-binding domain of botulinum neurotoxin type HA, also known as type FA or H

Guorui Yao; Kwok Ho Lam; Kay Perry; Jasmin Weisemann; Andreas Rummel; Rongsheng Jin

Botulinum neurotoxins (BoNTs), which have been exploited as cosmetics and muscle-disorder treatment medicines for decades, are well known for their extreme neurotoxicity to humans. They pose a potential bioterrorism threat because they cause botulism, a flaccid muscular paralysis-associated disease that requires immediate antitoxin treatment and intensive care over a long period of time. In addition to the existing seven established BoNT serotypes (BoNT/A–G), a new mosaic toxin type termed BoNT/HA (aka type FA or H) was reported recently. Sequence analyses indicate that the receptor-binding domain (HC) of BoNT/HA is ~84% identical to that of BoNT/A1. However, BoNT/HA responds differently to some potent BoNT/A-neutralizing antibodies (e.g., CR2) that target the HC. Therefore, it raises a serious concern as to whether BoNT/HA poses a new threat to our biosecurity. In this study, we report the first high-resolution crystal structure of BoNT/HA-HC at 1.8 Å. Sequence and structure analyses reveal that BoNT/HA and BoNT/A1 are different regarding their binding to cell-surface receptors including both polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Furthermore, the new structure also provides explanations for the ~540-fold decreased affinity of antibody CR2 towards BoNT/HA compared to BoNT/A1. Taken together, these new findings advance our understanding of the structure and function of this newly identified toxin at the molecular level, and pave the way for the future development of more effective countermeasures.

Collaboration


Dive into the Kay Perry's collaboration.

Top Co-Authors

Avatar

Rongsheng Jin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwok Ho Lam

University of California

View shared research outputs
Top Co-Authors

Avatar

Guorui Yao

University of California

View shared research outputs
Top Co-Authors

Avatar

Min Dong

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Xu

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge