Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay Prüfer is active.

Publication


Featured researches published by Kay Prüfer.


Science | 2010

A draft sequence of the Neandertal genome.

Richard E. Green; Johannes Krause; Adrian W. Briggs; Tomislav Maricic; Udo Stenzel; Martin Kircher; Nick Patterson; Heng Li; Weiwei Zhai; Markus Hsi-Yang Fritz; Nancy F. Hansen; Eric Durand; Anna-Sapfo Malaspinas; Jeffrey D. Jensen; Tomas Marques-Bonet; Can Alkan; Kay Prüfer; Matthias Meyer; Hernán A. Burbano; Jeffrey M. Good; Rigo Schultz; Ayinuer Aximu-Petri; Anne Butthof; Barbara Höber; Barbara Höffner; Madlen Siegemund; Antje Weihmann; Chad Nusbaum; Eric S. Lander; Carsten Russ

Kissing Cousins Neandertals, our closest relatives, ranged across Europe and Southwest Asia before their extinction approximately 30,000 years ago. Green et al. (p. 710) report a draft sequence of the Neandertal genome, created from three individuals, and compare it with genomes of five modern humans. The results suggest that ancient genomes of human relatives can be recovered with acceptably low contamination from modern human DNA. Because ancient DNA can be contaminated with microbial DNA, Burbano et al. (p. 723) developed a target sequence capture approach to obtain 14 kilobases of Neandertal DNA from a fairly poorly preserved sample with a high microbial load. A number of genomic regions and genes were revealed as candidates for positive selection early in modern human history. The genomic data suggest that Neandertals mixed with modern human ancestors some 120,000 years ago, leaving traces of Neandertal DNA in contemporary humans. Gene flow has occurred from Neandertals to humans of Eurasian descent, but not to Africans. Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


Science | 2012

A High-Coverage Genome Sequence from an Archaic Denisovan Individual

Matthias Meyer; Martin Kircher; Marie Theres Gansauge; Heng Li; Fernando Racimo; Swapan Mallick; Joshua G. Schraiber; Flora Jay; Kay Prüfer; Cesare de Filippo; Peter H. Sudmant; Can Alkan; Qiaomei Fu; Ron Do; Nadin Rohland; Arti Tandon; Michael Siebauer; Richard E. Green; Katarzyna Bryc; Adrian W. Briggs; Udo Stenzel; Jesse Dabney; Jay Shendure; Jacob O. Kitzman; Michael F. Hammer; Michael V. Shunkov; Anatoli P. Derevianko; Nick Patterson; Aida M. Andrés; Evan E. Eichler

Ancient Genomics The Denisovans were archaic humans closely related to Neandertals, whose populations overlapped with the ancestors of modern-day humans. Using a single-stranded library preparation method, Meyer et al. (p. 222, published online 30 August) provide a detailed analysis of a high-quality Denisovan genome. The genomic sequence provides evidence for very low rates of heterozygosity in the Denisova, probably not because of recent inbreeding, but instead because of a small population size. The genome sequence also illuminates the relationships between humans and archaics, including Neandertals, and establishes a catalog of genetic changes within the human lineage. A close-up look provides clues to the relationships between modern humans, Denisovans, and Neandertals. We present a DNA library preparation method that has allowed us to reconstruct a high-coverage (30×) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans.


Nature | 2014

The complete genome sequence of a Neanderthal from the Altai Mountains

Kay Prüfer; Fernando Racimo; Nick Patterson; Flora Jay; Sriram Sankararaman; Susanna Sawyer; Anja Heinze; Gabriel Renaud; Peter H. Sudmant; Cesare de Filippo; Heng Li; Swapan Mallick; Michael Dannemann; Qiaomei Fu; Martin Kircher; Martin Kuhlwilm; Michael Lachmann; Matthias Meyer; Matthias Ongyerth; Michael Siebauer; Christoph Theunert; Arti Tandon; Priya Moorjani; Joseph K. Pickrell; James C. Mullikin; Samuel H. Vohr; Richard E. Green; Ines Hellmann; Philip L. F. Johnson; Hélène Blanché

We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Patterns of damage in genomic DNA sequences from a Neandertal

Adrian W. Briggs; Udo Stenzel; Philip L. F. Johnson; Richard E. Green; Janet Kelso; Kay Prüfer; Matthias Meyer; Johannes Krause; Michael T. Ronan; Michael Lachmann; Svante Pääbo

High-throughput direct sequencing techniques have recently opened the possibility to sequence genomes from Pleistocene organisms. Here we analyze DNA sequences determined from a Neandertal, a mammoth, and a cave bear. We show that purines are overrepresented at positions adjacent to the breaks in the ancient DNA, suggesting that depurination has contributed to its degradation. We furthermore show that substitutions resulting from miscoding cytosine residues are vastly overrepresented in the DNA sequences and drastically clustered in the ends of the molecules, whereas other substitutions are rare. We present a model where the observed substitution patterns are used to estimate the rate of deamination of cytosine residues in single- and double-stranded portions of the DNA, the length of single-stranded ends, and the frequency of nicks. The results suggest that reliable genome sequences can be obtained from Pleistocene organisms.


Nature | 2014

The genomic landscape of Neanderthal ancestry in present-day humans

Sriram Sankararaman; Swapan Mallick; Michael Dannemann; Kay Prüfer; Janet Kelso; Svante Pääbo; Nick Patterson; David Reich

Genomic studies have shown that Neanderthals interbred with modern humans, and that non-Africans today are the products of this mixture. The antiquity of Neanderthal gene flow into modern humans means that genomic regions that derive from Neanderthals in any one human today are usually less than a hundred kilobases in size. However, Neanderthal haplotypes are also distinctive enough that several studies have been able to detect Neanderthal ancestry at specific loci. We systematically infer Neanderthal haplotypes in the genomes of 1,004 present-day humans. Regions that harbour a high frequency of Neanderthal alleles are enriched for genes affecting keratin filaments, suggesting that Neanderthal alleles may have helped modern humans to adapt to non-African environments. We identify multiple Neanderthal-derived alleles that confer risk for disease, suggesting that Neanderthal alleles continue to shape human biology. An unexpected finding is that regions with reduced Neanderthal ancestry are enriched in genes, implying selection to remove genetic material derived from Neanderthals. Genes that are more highly expressed in testes than in any other tissue are especially reduced in Neanderthal ancestry, and there is an approximately fivefold reduction of Neanderthal ancestry on the X chromosome, which is known from studies of diverse species to be especially dense in male hybrid sterility genes. These results suggest that part of the explanation for genomic regions of reduced Neanderthal ancestry is Neanderthal alleles that caused decreased fertility in males when moved to a modern human genetic background.


Nature | 2013

Great ape genetic diversity and population history

Javier Prado-Martinez; Peter H. Sudmant; Jeffrey M. Kidd; Heng Li; Joanna L. Kelley; Belen Lorente-Galdos; Krishna R. Veeramah; August E. Woerner; Timothy D. O’Connor; Gabriel Santpere; Alexander Cagan; Christoph Theunert; Ferran Casals; Hafid Laayouni; Kasper Munch; Asger Hobolth; Anders E. Halager; Maika Malig; Jessica Hernandez-Rodriguez; Irene Hernando-Herraez; Kay Prüfer; Marc Pybus; Laurel Johnstone; Michael Lachmann; Can Alkan; Dorina Twigg; Natalia Petit; Carl Baker; Fereydoun Hormozdiari; Marcos Fernandez-Callejo

Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria–Cameroon/western and central/eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost all species. We discover and assign 1,982 loss-of-function variants throughout the human and great ape lineages, determining that the rate of gene loss has not been different in the human branch compared to other internal branches in the great ape phylogeny. This comprehensive catalogue of great ape genome diversity provides a framework for understanding evolution and a resource for more effective management of wild and captive great ape populations.


Cell | 2008

A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing

Richard E. Green; Anna-Sapfo Malaspinas; Johannes Krause; Adrian W. Briggs; Philip L. F. Johnson; Caroline Uhler; Matthias Meyer; Jeffrey M. Good; Tomislav Maricic; Udo Stenzel; Kay Prüfer; Michael Siebauer; Hernán A. Burbano; Michael T. Ronan; Jonathan M. Rothberg; Michael Egholm; Pavao Rudan; Dejana Brajković; Zeljko Kućan; Ivan Gušić; Mårten Wikström; Liisa Laakkonen; Janet Kelso; Montgomery Slatkin; Svante Pääbo

A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000 year-old Neandertal individual with 8341 mtDNA sequences identified among 4.8 Gb of DNA generated from approximately 0.3 g of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs, and allows an estimate of the divergence date between the two mtDNA lineages of 660,000 +/- 140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared with other primate lineages, suggesting that the effective population size of Neandertals was small.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution

Kevin E. Langergraber; Kay Prüfer; Carolyn Rowney; Christophe Boesch; Catherine Crockford; Katie A. Fawcett; Eiji Inoue; Miho Inoue-Muruyama; John C. Mitani; Martin N. Muller; Martha M. Robbins; Grit Schubert; Tara S. Stoinski; Bence Viola; David P. Watts; Roman M. Wittig; Richard W. Wrangham; Klaus Zuberbühler; Svante Pääbo; Linda Vigilant

Fossils and molecular data are two independent sources of information that should in principle provide consistent inferences of when evolutionary lineages diverged. Here we use an alternative approach to genetic inference of species split times in recent human and ape evolution that is independent of the fossil record. We first use genetic parentage information on a large number of wild chimpanzees and mountain gorillas to directly infer their average generation times. We then compare these generation time estimates with those of humans and apply recent estimates of the human mutation rate per generation to derive estimates of split times of great apes and humans that are independent of fossil calibration. We date the human–chimpanzee split to at least 7–8 million years and the population split between Neanderthals and modern humans to 400,000–800,000 y ago. This suggests that molecular divergence dates may not be in conflict with the attribution of 6- to 7-million-y-old fossils to the human lineage and 400,000-y-old fossils to the Neanderthal lineage.


Nature | 2012

The bonobo genome compared with the chimpanzee and human genomes

Kay Prüfer; Kasper Munch; Ines Hellmann; Keiko Akagi; Jason R. Miller; Brian Walenz; Sergey Koren; Granger Sutton; Chinnappa D. Kodira; Roger Winer; James Knight; James C. Mullikin; Stephen Meader; Chris P. Ponting; Gerton Lunter; Saneyuki Higashino; Asger Hobolth; Julien Y. Dutheil; Emre Karakoc; Can Alkan; Saba Sajjadian; Claudia Rita Catacchio; Mario Ventura; Tomas Marques-Bonet; Evan E. Eichler; Claudine André; Rebeca Atencia; Lawrence Mugisha; Jörg Junhold; Nick Patterson

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

Collaboration


Dive into the Kay Prüfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge