Kayo Yasuda
Tokai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kayo Yasuda.
Nature | 1998
Naoaki Ishii; Michihiko Fujii; Philip S. Hartman; Michio Tsuda; Kayo Yasuda; Nanami Senoo-Matsuda; Sumino Yanase; Dai Ayusawa; Kenshi Suzuki
Much attention has focused on the aetiology of oxidative damagein cellular and organismal ageing. Especially toxic arethe reactive oxygen byproducts of respiration and other biological processes. A mev-1 (kn1 ) mutant of Caenorhabditis elegans has been found to be hypersensitive to raised oxygen concentrations,. Unlike the wild type, its lifespan decreases dramatically as oxygen concentrations are increased from 1 to 60% (ref. 7). Strains bearing this mutation accumulate markers of ageing (such as fluorescent materials and protein carbonyls) faster than the wild type,. We show here that mev-1 encodes a subunit of the enzyme succinate dehydrogenase cytochrome b , which is a component of complex II of the mitochondrial electron transport chain. We found that the ability of complex II to catalyse electron transport from succinate to ubiquinone is compromised in mev-1 animals. This may cause an indirect increase in superoxide levels, which in turn leads to oxygen hypersensitivity and premature ageing. Our results indicate that mev-1 governs the rate of ageing by modulating the cellular response to oxidative stress.
Mechanisms of Ageing and Development | 2004
Naoaki Ishii; Nanami Senoo-Matsuda; Kohichiro Miyake; Kayo Yasuda; Takamasa Ishii; Philip S. Hartman; Satoru Furukawa
The mev-1 gene encodes cytochrome b, a large subunit of the Complex II enzyme succinate-CoQ oxidoreductase. The mev-1(kn1) mutants are hypersensitive to oxidative stress and age precociously, probably because of elevated superoxide anion production in mitochondria. Coenzyme Q (CoQ) is essential for the mitochondrial respiratory chain. Here, we show that CoQ(10) and Vitamin E extended the life span of wild-type Caenorhabditis elegans. Conversely, only CoQ(10) recovered the life shortening effects seen in mev-1. We also show that CoQ(10) but not Vitamin E reduced superoxide anion levels in wild type and mev-1. Another previously described phenotype of mev-1 animals is the presence of supernumerary apoptotic cells. We now demonstrate that CoQ(10) (but not Vitamin E) suppressed these supernumerary apoptoses. Collectively these data suggest that exogenously supplied CoQ(10) can play a significant anti-aging function. It may do so either by acting as an antioxidant to dismutate the free radical superoxide anion or by reducing the uncoupling of reactions during election transport that could otherwise result in superoxide anion production. The latter activity has not been ascribed to CoQ(10); however, it is known that conditions that uncouple electron transport reactions can lead to elevated superoxide anion production.
Mechanisms of Ageing and Development | 2002
Sumino Yanase; Kayo Yasuda; Naoaki Ishii
Oxidative damage shortens the life span of the nematode Caenorhabditis elegans (C. elegans), even in an age-1 mutant that is characterized by a long life and oxygen resistance. We found that daily short-term exposure (3 h) to hyperoxia further extended the life span of age-1, a phenomenon known as an adaptive response. age-1 also showed resistance to paraquat and heat. Acute hyperoxic treatment did not extend the life spans of wild type, daf-16 or mev-1. daf-16 mutant had a slightly shorter life span compared to wild type and was sensitive to heat and paraquat. The daf-16 phenotype resembles that of mev-1 showing a short life and oxygen sensitivity. We measured mRNA levels of superoxide dismutase genes (sod-1 through 4), catalase genes (clt-1 and ctl-2), known to encode anti-oxidant enzymes, and found they were elevated in age-1 young adults. On the other hand, in daf-16 and mev-1, the expression of sod-1, sod-2 and sod-3 genes was lower rather than in wild type. Conversely, ctl-1 and ctl-2 genes expression was significantly elevated in daf-16 and mev-1. This suggests that DAF-16, a forkhead/winged-helix transcription factor, whose expression is suppressed by AGE-1, phosphoinositide 3-kinase (PI3-kinase), regulates anti-oxidant genes as well as energy metabolism under atmospheric conditions. However, the level of gene expression of SOD and catalase was not elevated by short-term exposure to 90% oxygen in wild type, mev-1, daf-16 and even age-1. This suggests that SOD and catalase do not play a role in the adaptive response against oxidative stress under hyperoxia, at least under these experimental conditions.
Mechanisms of Ageing and Development | 1999
Sataro Goto; Akihiro Nakamura; Zsolt Radak; Hideko Nakamoto; Ryoya Takahashi; Kayo Yasuda; Y. Sakurai; Naoaki Ishii
Protein carbonyls were studied in aging and exercise by immunoblot followed by one- or two-dimensional polyacrylamide gel electrophoresis using antibodies against 2,4-dinitrophenylhydrazones. Proteins of rat kidneys exhibited significant age-related increase in the amount of carbonyl while those of the brain and liver did not. Major carbonylated proteins in the kidney included serum albumin. In nematodes in which protein carbonyls increased with age, one of the carbonylated proteins was identified as vitellogenin, an egg-yolk protein. A possible biological significance of this protein present in abundance even after egg-laying stages is discussed in terms of protection against oxidative stress. Exhaustive exercise induced significant increase in the carbonylation of selected but unidentified proteins in the lung. This oxidative stress might be caused by xanthine oxidase in this tissue and hypoxanthine derived from ATP-depleted muscles. Exercise at high altitude caused higher carbonylation of the skeletal muscle proteins, most notably a protein likely to be actin, than that at sea level but no significant difference was observed in lipid peroxidation. These studies emphasize the value of immunoblot analysis of tissue protein carbonyls in a variety of situations where oxidative stress is likely involved.
Mechanisms of Ageing and Development | 2006
Kayo Yasuda; Takamasa Ishii; Hitoshi Suda; Akira Akatsuka; Philip S. Hartman; Sataro Goto; Masaki Miyazawa; Naoaki Ishii
A number of observations have been made to examine the role that mitochrondrial energetics and superoxide anion production play in the aging of wild-type Caenorhabditis elegans. Ultrastructural analyses reveal the presence of swollen mitochondria, presumably produced by fusion events. Two key mitochondrial functions - the activity of two electron transport chain complexes and oxygen consumption - decreased as animals aged. Carbonylated proteins, one byproduct of oxidative stress, accumulated in mitochondria much more than in the cytoplasm. This is consistent with the notion that mitochondria are the primary source of endogenous reactive oxygen species. However, the level of mitochondrially generated superoxide anion did not change significantly during aging, suggesting that the accumulation of oxidative damage is not due to excessive production of superoxide anion in geriatric animals. In concert, these data support the notion that the mitochondrial function is an important aging determinant in wild-type C. elegans.
Cell Metabolism | 2011
Yuta Takahashi; Hiroaki Daitoku; Keiko Hirota; Hiroko Tamiya; Atsuko Yokoyama; Koichiro Kako; Yusuke Nagashima; Ayumi Nakamura; Takashi Shimada; Satoshi Watanabe; Kazuyuki Yamagata; Kayo Yasuda; Naoaki Ishii; Akiyoshi Fukamizu
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). It is well established that PRMTs are implicated in various cellular processes, but their physiological roles remain unclear. Using nematodes with a loss-of-function mutation, we show that prmt-1, the major asymmetric arginine methyltransferase, is a positive regulator of longevity in C. elegans. This regulation is dependent on both its enzymatic activity and DAF-16/FoxO transcription factor, which is negatively regulated by AKT-mediated phosphorylation downstream of the DAF-2/insulin signaling. prmt-1 is also required for stress tolerance and fat storage but not dauer formation in daf-2 mutants. Biochemical analyses indicate that PRMT-1 methylates DAF-16, thereby blocking its phosphorylation by AKT. Disruption of PRMT-1 induces phosphorylation of DAF-16 with a concomitant reduction in the expression of longevity-related genes. Thus, we provide a mechanism by which asymmetric arginine dimethylation acts as an antiaging modification in C. elegans.
Iubmb Life | 2001
Hiroyuki Ishiguro; Kayo Yasuda; Naoaki Ishii; Kenichi Ihara; Tomoichi Ohkubo; Mineyoshi Hiyoshi; Kazuhiro Ono; Nanami Senoo-Matsuda; Osamu Shinohara; Fumihiro Yosshii; Masaru Murakami; Philip S. Hartman; Michio Tsuda
The mechanisms that lead to mitochondrial damage under oxidative stress conditions were examined in primary and cultured cells as well as in the nematode Caenorhabditis elegans ( C. elegans ) treated simultaneously with electron transport inhibitors and oxygen gas. Oxygen loading enhanced the damage of PC 12 cells by thenoyltrifluoroacetone (TTFA, a complex II inhibitor), but did not by rotenone (a complex I inhibitor), antimycin (a complex III inhibitor), and sodium azide (a complex IV inhibitor). In primary hepatocytes, the enhancement was observed with the addition of sodium azide and rotenone, but not by TTFA or antimycin. In the nematode, only rotenone and TTFA enhanced the sensitivity under hyperoxia. These results demonstrate that highly specific inhibitors of electron transport can induce oxygen hypersensitivity in cell levels such as PC 12 cells and primary hepatocytes, and animal level of C. elegans . In addition the cell damage is different dependent on cell type and organism.
Mitochondrion | 2011
Takamasa Ishii; Masaki Miyazawa; Akira Onodera; Kayo Yasuda; Noboru Kawabe; Mika Kirinashizawa; Shinichi Yoshimura; Naoki Maruyama; Philip S. Hartman; Naoaki Ishii
We have previously demonstrated that excessive mitochondrial reactive oxygen species caused by mutations in the SDHC subunit of Complex II resulted in premature death in C. elegans and Drosophila, tumors in mouse cells and infertility in transgenic mice. We now report the generation and initial characterization of conditional transgenic mice (Tet-mev-1) using our uniquely developed Tet-On/Off system, which equilibrates transgene expression to endogenous levels. The mice experienced mitochondrial respiratory chain dysfunction that induced reactive oxygen species overproduction. The mitochondrial oxidative stress resulted in excessive apoptosis leading to low birth weight and growth retardation in the neonatal developmental phase in Tet-mev-1 mice.
Redox biology | 2014
Takamasa Ishii; Masaki Miyazawa; Yumi Takanashi; Maya Tanigawa; Kayo Yasuda; Hiromi Onouchi; Noboru Kawabe; Junji Mitsushita; Phil S. Hartman; Naoaki Ishii
Historical data in the 1950s suggests that 7%, 11%, 33%, and 87% of couples were infertile by ages 30, 35, 40 and 45, respectively. Up to 22.3% of infertile couples have unexplained infertility. Oxidative stress is associated with male and female infertility. However, there is insufficient evidence relating to the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. Recently, we have established Tet-mev-1 conditional transgenic mice, which can express the doxycycline-induced mutant SDHCV69E transgene and experience mitochondrial respiratory chain dysfunction leading to intracellular oxidative stress. In this report, we demonstrate that this kind of abnormal mitochondrial respiratory chain-induced chronic oxidative stress affects fertility, pregnancy and delivery rates as well as causes recurrent abortions, occasionally resulting in maternal death. Despite this, spermatogenesis and early embryogenesis are completely normal, indicating the mutations effects to be rather subtle. Female Tet-mev-1 mice exhibit thrombocytosis and splenomegaly in both non-pregnant and pregnant mice as well as placental angiodysplasia with reduced Flt-1 protein leading to hypoxic conditions, which could contribute to placental inflammation and fetal abnormal angiogenesis. Collectively these data strongly suggest that chronic oxidative stress caused by mitochondrial mutations provokes spontaneous abortions and recurrent miscarriage resulting in age-related female infertility.
Artificial Organs | 2014
Chieko Murayama; Akira T. Kawaguchi; Akemi Kamijo; Katsuko Naito; Kayoko Iwao; Hideo Tsukamoto; Kayo Yasuda; Yasukazu Nagato
Liposome-encapsulated hemoglobin with high O2 -affinity (P50 O2 = 10 mm Hg, h-LEH) was reported to enhance tumor radiosensitivity. We hypothesize that targeted O2 delivery to tumor hypoxia by h-LEH may also enhance chemotherapy to suppress tumor growth and metastasis in mice. Doxorubicin (DXR; 0.5 or 2 mg/kg i.p.) or S-1 (4 or 8 mg/kg orally) alone or in combination with h-LEH (5 mL/kg i.v.) was administered for 2 weeks to C57BL/6N mice inoculated with Lewis Lung Carcinoma (LLC) in the leg. After the 2-week therapy in six treatment groups, mice were sacrificed for quantitative assessment of tumor growth and lung metastasis. The tumor was then evaluated for its expression of hypoxia-inducible factor-1α (HIF-1α) and matrix metallopoteinase-2 (MMP-2) activity. Combined use of h-LEH and chemotherapeutic agents (DXR or S-1) showed no additional enhancement on suppression of the tumor growth over the chemotherapeutic agent alone. However, the combination use of h-LEH significantly suppressed the number and total area of metastatic colonies in the lung compared with each chemotherapeutic agent alone. Although HIF-1α expression and MMP-2 activity in the original tumor was significantly suppressed in the groups of mice treated with either DXR or S-1 alone, the addition of h-LEH to either agent showed further enhancement of oxygen-mediated degradation of HIF-1α and suppression of MMP-2 activity. Although the addition of h-LEH to DXR or S-1 had little effect on original LLC tumor growth, it significantly enhanced suppression of lung metastasis in mice.