Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kayvan F. Tehrani is active.

Publication


Featured researches published by Kayvan F. Tehrani.


ACS Nano | 2015

Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy

Jianquan Xu; Kayvan F. Tehrani; Peter Kner

We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.


Optics Express | 2015

Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm

Kayvan F. Tehrani; Jianquan Xu; Yiwen Zhang; Ping Shen; Peter Kner

The resolution of Single Molecule Localization Microscopy (SML) is dependent on the width of the Point Spread Function (PSF) and the number of photons collected. However, biological samples tend to degrade the shape of the PSF due to the heterogeneity of the index of refraction. In addition, there are aberrations caused by imperfections in the optical components and alignment, and the refractive index mismatch between the coverslip and the sample, all of which directly reduce the accuracy of SML. Adaptive Optics (AO) can play a critical role in compensating for aberrations in order to increase the resolution. However the stochastic nature of single molecule emission presents a challenge for wavefront optimization because the large fluctuations in photon emission do not permit many traditional optimization techniques to be used. Here we present an approach that optimizes the wavefront during SML acquisition by combining an intensity independent merit function with a Genetic algorithm (GA) to optimize the PSF despite the fluctuating intensity. We demonstrate the use of AO with GA in tissue culture cells and through ~50µm of tissue in the Drosophila Central Nervous System (CNS) to achieve a 4-fold increase in the localization precision.


Scientific Reports | 2016

Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

Prasangi Rajapaksha; Zhonghou Wang; Nandakumar Venkatesan; Kayvan F. Tehrani; Jason Payne; Raymond Swetenburg; Fuminori Kawabata; Shoji Tabata; Luke J. Mortensen; Steven L. Stice; Robert B. Beckstead; Hong Xiang Liu

In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.


Proceedings of SPIE | 2016

Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta

Kayvan F. Tehrani; Emily G. Pendleton; Charles P. Lin; Luke J. Mortensen

Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplanted cells in the living bone marrow. We ablated cells deep in the bone marrow and observed minimal collateral damage to surrounding tissue. Future work will evaluate the local impact of transplanted MSCs on bone deposition in vivo.


MEMS Adaptive Optics VIII | 2014

Point spread function optimization for STORM using adaptive optics

Kayvan F. Tehrani; Peter Kner

Stochastic Optical Reconstruction Microscopy (STORM) requires a high Strehl ratio point spread function (PSF) to achieve high resolution, especially in the presence of background fluorescence. The PSF is degraded by aberrations caused by imperfections in the optics, the refractive index mismatch between the sample and coverslip, and the refractive index variations of the sample. These aberrations distort the shape of the PSF and increase the PSF width directly reducing the resolution of STORM. Here we discuss the use of Adaptive Optics (AO) to correct aberrations, maintaining a high Strehl ratio even in thick tissue. Because the intensity fluctuates strongly from frame to frame, image intensity is not a reliable measure of PSF quality, and the choice of a robust optimization metric is critical. We demonstrate the use of genetic algorithms with single molecule imaging for optimization of the wavefront and introduce a metric that is relatively insensitive to image intensity. We demonstrate the correction of the wavefront from measurements of single quantum dots.


Proceedings of SPIE | 2017

Fast axial scanning for 2-photon microscopy using liquid lens technology

Kayvan F. Tehrani; Min Kyoung Sun; Lohitash Karumbaiah; Luke J. Mortensen

Scanning microscopy methods require movement of the focus in Z coordinates to produce an image of a 3-dimensional volume. In a typical imaging system, the optical setup is kept fixed and either the sample or the objective is translated with a mechanical stage driven by a stepper motor or a piezoelectric element. Mechanical Z scanning is precise, but its slow response and vulnerability to mechanical vibrations and stress make it disadvantageous to image dynamic, time-varying samples such as live cell structures. An alternative method less susceptible to these problems is to change the focal plane using conjugate optics. Deformable mirrors, acousto-optics, and electrically tunable lenses have been experimented with to achieve this goal and have attained very fast and precise Z-scanning without physically moving the sample. Here, we present the use of a liquid lens for fast axial scanning. Liquid lenses have a long functional life, high degree of phase shift, and low sensitivity to mechanical stress. They work on the principle of refraction at a liquid-liquid interface. At the boundary of a polar and an apolar liquid a spherical surface is formed whose curvature can be controlled by adjusting its relative wettability using electro-wetting. We characterize the effects of the lens on attainable Z displacement, beam spectral characteristics, and pulse duration as compared with mechanical scanning.


Proceedings of SPIE | 2015

Wavefront correction using machine learning methods for single molecule localization microscopy

Kayvan F. Tehrani; Jianquan Xu; Peter Kner

Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.


Multiphoton Microscopy in the Biomedical Sciences XVIII | 2018

Resolution enhancement of 2-photon microscopy using high-refractive index microspheres

Kayvan F. Tehrani; Arash Darafsheh; Luke J. Mortensen; Sendy Phang

Intravital microscopy using multiphoton processes is the standard tool for deep tissue imaging inside of biological specimens. Usually, near-infrared and infrared light is used to excite the sample, which enables imaging several mean free path inside a scattering tissues. Using longer wavelengths, however, increases the width of the effective multiphoton Point Spread Function (PSF). Many features inside of cells and tissues are smaller than the diffraction limit, and therefore not possible to distinguish using a large PSF. Microscopy using high refractive index microspheres has shown promise to increase the numerical aperture of an imaging system and enhance the resolution. It has been shown that microspheres can image features ~λ/7 using single photon process fluorescence. In this work, we investigate resolution enhancement for Second Harmonic Generation (SHG) and 2-photon fluorescence microscopy. We used Barium Titanate glass microspheres with diameters ∼20–30 μm and refractive index ∼1.9–2.1. We show microsphere-assisted SHG imaging in bone collagen fibers. Since bone is a very dense tissue constructed of bundles of collagen fibers, it is nontrivial to image individual fibers. We placed microspheres on a dense area of the mouse cranial bone, and achieved imaging of individual fibers. We found that microsphere assisted SHG imaging resolves features of the bone fibers that are not readily visible in conventional SHG imaging. We extended this work to 2-photon microscopy of mitochondria in mouse soleus muscle, and with the help of microsphere resolving power, we were able to trace individual mitochondrion from their ensemble.


Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI | 2018

Characterization of bone collagen organization defects in murine hypophosphatasia using a Zernike model of optical aberrations

Kayvan F. Tehrani; Emily G. Pendleton; Ruth P. Barrow; Luke J. Mortensen; Bobby Leitmann

Bone growth and strength is severely impacted by Hypophosphatasia (HPP). It is a genetic disease that affects the mineralization of the bone. We hypothesize that it impacts overall organization, density, and porosity of collagen fibers. Lower density of fibers and higher porosity cause less absorption and scattering of light, and therefore a different regime of transport mean free path. To find a cure for this disease, a metric for the evaluation of bone is required. Here we present an evaluation method based on our Phase Accumulation Ray Tracing (PART) method. This method uses second harmonic generation (SHG) in bone collagen fiber to model bone indices of refraction, which is used to calculate phase retardation on the propagation path of light in bone. The calculated phase is then expanded using Zernike polynomials up to 15th order, to make a quantitative analysis of tissue anomalies. Because the Zernike modes are a complete set of orthogonal polynomials, we can compare low and high order modes in HPP, compare them with healthy wild type mice, to identify the differences between their geometry and structure. Larger coefficients of low order modes show more uniform fiber density and less porosity, whereas the opposite is shown with larger coefficients of higher order modes. Our analyses show significant difference between Zernike modes in different types of bone evidenced by Principal Components Analysis (PCA).


Biomedical Optics Express | 2018

Two-photon deep-tissue spatially resolved mitochondrial imaging using membrane potential fluorescence fluctuations

Kayvan F. Tehrani; Emily G. Pendleton; William M. Southern; Jarrod A. Call; Luke J. Mortensen

Cell metabolism and viability are directly reflected in their mitochondria. Imaging-based analysis of mitochondrial morphological structure, size and dynamic characteristics can therefore provide critical insight into cell function. However, mitochondria are often very abundant, and due to their close to diffraction-limit size, it is often non-trivial to distinguish a tubular or large mitochondrion from an ensemble of punctate mitochondria. In this paper, we use membrane potential dependent fluorescence fluctuations of individual mitochondria to resolve them using an approach similar to single molecule localization microscopy. We use 2-photon microscopy to image mitochondrial intensity fluctuations at 200 μm deep inside an intact in-vivo mouse soleus muscle. By analyzing the acquired images, we can reconstruct images with an extra layer of information about individual mitochondria, separated from their ensemble. Our analysis shows a factor of 14 improvement in detection of mitochondria.

Collaboration


Dive into the Kayvan F. Tehrani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lohitash Karumbaiah

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ping Shen

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sendy Phang

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge