Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kayvon Modjarrad is active.

Publication


Featured researches published by Kayvon Modjarrad.


Science | 2016

Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys

Peter Abbink; Rafael A. Larocca; Rafael De La Barrera; Christine A. Bricault; Edward T. Moseley; Michael Boyd; Marinela Kirilova; Zhenfeng Li; David Ng’ang’a; Ovini Nanayakkara; Ramya Nityanandam; Noe B. Mercado; Erica N. Borducchi; Arshi Agarwal; Amanda L. Brinkman; Crystal Cabral; Abishek Chandrashekar; Patricia B. Giglio; David Jetton; Jessica Jimenez; Benjamin C. Lee; Shanell Mojta; Katherine Molloy; Mayuri Shetty; George H. Neubauer; Kathryn E. Stephenson; Jean Pierre Schatzmann Peron; Paolo Marinho de Andrade Zanotto; Johnathan Misamore; Brad Finneyfrock

Zika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys. A purified inactivated virus vaccine induced ZIKV-specific neutralizing antibodies and completely protected monkeys against ZIKV strains from both Brazil and Puerto Rico. Purified immunoglobulin from vaccinated monkeys also conferred passive protection in adoptive transfer studies. A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector vaccine, both expressing ZIKV premembrane and envelope, also elicited neutralizing antibodies and completely protected monkeys against ZIKV challenge. These data support the rapid clinical development of ZIKV vaccines for humans.


Current Opinion in Immunology | 2015

Novel antigens for RSV vaccines.

Barney S. Graham; Kayvon Modjarrad; Jason S. McLellan

Respiratory syncytial virus (RSV) remains a leading global cause of infant mortality and adult morbidity. Infection, which recurs throughout life, elicits only short-lived immunity. The development of a safe and efficacious vaccine has, thus far, been elusive. Recent technological advances, however, have yielded promising RSV vaccine candidates that are based on solving atomic-level structures of surface glycoproteins interacting with neutralizing antibodies. The class I fusion glycoprotein, F, serves as the primary antigenic component of most vaccines, and is the target of the only licensed monoclonal antibody product used to reduce the frequency of severe disease in high-risk neonates. However, success of prior F-based vaccines has been limited by the lack of understanding how the conformational rearrangement between a metastable prefusion F (pre-F) and a stable postfusion F (post-F) affected the epitope content. Neutralizing epitopes reside on both conformations, but those specific to pre-F are far more potent than those previously identified and present on post-F. The solution of the pre-F structure and its subsequent characterization and stabilization illustrates the value of a structure-based approach to vaccine development, and provides hope that a safe and effective RSV vaccine is possible.


PLOS Pathogens | 2017

Impact of prior flavivirus immunity on Zika virus infection in rhesus macaques

Michael K. McCracken; Gregory D. Gromowski; Heather Friberg; Xiaoxu Lin; Peter Abbink; Rafael De La Barrera; Kenneth H. Eckles; Lindsey S Garver; Michael Boyd; David Jetton; Dan H. Barouch; Matthew C. Wise; Bridget S. Lewis; Jeffrey R. Currier; Kayvon Modjarrad; Mark Milazzo; Michelle Liu; Anna B. Mullins; J. Robert Putnak; Nelson L. Michael; Richard G. Jarman; Stephen J. Thomas

Studies have demonstrated cross-reactivity of anti-dengue virus (DENV) antibodies in human sera against Zika virus (ZIKV), promoting increased ZIKV infection in vitro. However, the correlation between in vitro and in vivo findings is not well characterized. Thus, we evaluated the impact of heterotypic flavivirus immunity on ZIKV titers in biofluids of rhesus macaques. Animals previously infected (≥420 days) with DENV2, DENV4, or yellow fever virus were compared to flavivirus-naïve animals following infection with a Brazilian ZIKV strain. Sera from DENV-immune macaques demonstrated cross-reactivity with ZIKV by antibody-binding and neutralization assays prior to ZIKV infection, and promoted increased ZIKV infection in cell culture assays. Despite these findings, no significant differences between flavivirus-naïve and immune animals were observed in viral titers, neutralizing antibody levels, or immune cell kinetics following ZIKV infection. These results indicate that prior infection with heterologous flaviviruses neither conferred protection nor increased observed ZIKV titers in this non-human primate ZIKV infection model.


Vaccine | 2016

Status of vaccine research and development of vaccines for Staphylococcus aureus.

Birgitte K. Giersing; Sana S. Dastgheyb; Kayvon Modjarrad; Vasee S. Moorthy

Staphylococcus aureus is a highly versatile gram positive bacterium that is resident as an asymptomatic colonizer on the skin and in the nasopharynx of approximately 30% of individuals. Nasopharyngeal colonization is a risk for acquiring S. aureus infections, which can cause a range of clinical symptoms that are commonly associated with skin and soft-tissue infections. The emergence of S. aureus strains that are highly resistant to antimicrobials has recently become a major public health concern. In low-income countries the incidence of S. aureus disease is highest in neonates and children up to one year of age and mortality rates are estimated to be up to 50%. In the United States, S. aureus infection accounts for approximately 300,000 hospitalizations per year. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Two vaccine candidates have previously been evaluated in late-stage clinical trials but have not demonstrated efficacy. At present, one vaccine candidate and two monoclonal antibody are undergoing clinical evaluation in target groups at high risk for S. aureus infection. This review provides an overview of current vaccine development efforts and presents the major technical and regulatory challenges to developing a licensed S. aureus vaccine.


The Lancet | 2017

Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials

Kayvon Modjarrad; Leyi Lin; Sarah L. George; Kathryn E. Stephenson; Kenneth H. Eckels; Rafael De La Barrera; Richard G. Jarman; Erica Sondergaard; Janice Tennant; Jessica L Ansel; Kristin Mills; Michael Koren; Merlin L. Robb; Jill Barrett; Jason Thompson; Alison E Kosel; Peter Dawson; Andrew J. Hale; C Sabrina Tan; Stephen R. Walsh; Keith Meyer; James D. Brien; Trevor A Crowell; Azra Blazevic; Karla Mosby; Rafael A. Larocca; Peter Abbink; Michael Boyd; Christine A. Bricault; Michael S. Seaman

BACKGROUND A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. METHODS We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 μg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. FINDINGS We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. INTERPRETATION The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. FUNDING Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases.


Science Translational Medicine | 2017

Durability and correlates of vaccine protection against Zika virus in rhesus monkeys

Peter Abbink; Rafael A. Larocca; Kittipos Visitsunthorn; Michael Boyd; Rafael De La Barrera; Gregory D. Gromowski; Marinela Kirilova; Rebecca Peterson; Zhenfeng Li; Ovini Nanayakkara; Ramya Nityanandam; Noe B. Mercado; Erica N. Borducchi; Abishek Chandrashekar; David Jetton; Shanell Mojta; Priya Gandhi; Jake LeSuer; Shreeya Khatiwada; Mark G. Lewis; Kayvon Modjarrad; Richard G. Jarman; Kenneth H. Eckels; Stephen J. Thomas; Nelson L. Michael; Dan H. Barouch

Not all vaccines afford robust protection against ZIKV challenge in rhesus monkeys at 1 year after vaccination. Patience pays off As an individual may not encounter the pathogen for years after they have been vaccinated, efficacious vaccines typically require induction of long-lasting immunity. Abbink and colleagues vaccinated nonhuman primates with one of several candidate Zika virus vaccines and then waited an entire year before conducting a viral challenge. These vaccines had all shown promising results in previous experiments with a more immediate challenge, but here, one vaccine faltered, likely due to waning antibodies. The researchers performed more experiments to suggest that circulating antibodies are mediating protection for these vaccines. These results are useful for Zika virus vaccine development and instructive for vaccine development in general. An effective Zika virus (ZIKV) vaccine will require long-term durable protection. Several ZIKV vaccine candidates have demonstrated protective efficacy in nonhuman primates, but these studies have typically involved ZIKV challenge shortly after vaccination at peak immunity. We show that a single immunization with an adenovirus vector–based vaccine, as well as two immunizations with a purified inactivated virus vaccine, afforded robust protection against ZIKV challenge in rhesus monkeys at 1 year after vaccination. In contrast, two immunizations with an optimized DNA vaccine, which provided complete protection at peak immunity, resulted in reduced protective efficacy at 1 year that was associated with declining neutralizing antibody titers to subprotective levels. These data define a microneutralization log titer of 2.0 to 2.1 as the threshold required for durable protection against ZIKV challenge in this model. Moreover, our findings demonstrate that protection against ZIKV challenge in rhesus monkeys is possible for at least 1 year with a single-shot vaccine.


Nature Medicine | 2016

A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation

Kayvon Modjarrad; Vasee S. Moorthy; Peter Ben Embarek; Maria D. Van Kerkhove; Jerome H. Kim; Marie-Paule Kieny

As part of the World Health Organization (WHO) R&D Blueprint initiative, leading stakeholders on Middle East respiratory syndrome coronavirus (MERS-CoV) convened to agree on strategic public-health goals and global priority research activities that are needed to combat MERS-CoV. Supplementary information The online version of this article (doi:10.1038/nm.4131) contains supplementary material, which is available to authorized users.


Vaccine | 2016

Report from the World Health Organization's Product Development for Vaccines Advisory Committee (PDVAC) meeting, Geneva, 7-9th Sep 2015.

Birgitte K. Giersing; Kayvon Modjarrad; David C. Kaslow; Vasee S. Moorthy; Ashish Bavdekar; Klaus Cichutek; Alejandro Cravioto; Bernard Fritzell; Barney S. Graham; Ruth A. Karron; Claudio F. Lanata; Mair Powell; Yiming Shao; Peter G. Smith

Abstract There are more vaccines in development, against a greater number of pathogens, than ever before. A challenge with this exceptional level of activity and investment is how to select and resource the most promising approaches to have the most significant impact on public health. The WHO Product Development for Vaccines Advisory Committee (PDVAC) was established in 2014 to provide strategic advice and recommendations to WHO for vaccines in clinical development that could have a significant impact on public health in low and middle income countries. On 7–9th September 2015, PDVAC was convened for the second time, when the committee reviewed vaccine developments in 24 disease areas. This report summarises the key recommendations from that consultation.


Vaccine | 2016

MERS-CoV vaccine candidates in development: The current landscape

Kayvon Modjarrad

Abstract Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance, has caused severe acute respiratory disease in more than 1600 people, resulting in more than 600 deaths. The high case fatality rate, growing geographic distribution and vaguely defined epidemiology of MERS-CoV have created an urgent need for effective public health countermeasures, paramount of which is an effective means of prevention through a vaccine or antibody prophylaxis. Despite the relatively few number of cases to-date, research and development of MERS-CoV vaccine candidates is advancing quickly. This review surveys the landscape of these efforts across multiple groups in academia, government and industry.


Emerging Infectious Diseases | 2016

Toward Developing a Preventive MERS-CoV Vaccine-Report from a Workshop Organized by the Saudi Arabia Ministry of Health and the International Vaccine Institute, Riyadh, Saudi Arabia, November 14-15, 2015.

Jean-Louis Excler; Christopher J. Delvecchio; Ryan E. Wiley; Marni Williams; In-Kyu Yoon; Kayvon Modjarrad; Mohamed Boujelal; Vasee S. Moorthy; Ahmad Salah Hersi; Jerome H. Kim

Middle East respiratory syndrome (MERS) remains a serious international public health threat. With the goal of accelerating the development of countermeasures against MERS coronavirus (MERS-CoV), funding agencies, nongovernmental organizations, and researchers across the world assembled in Riyadh, Saudi Arabia, on November 14–15, 2015, to discuss vaccine development challenges. The meeting was spearheaded by the Saudi Ministry of Health and co-organized by the International Vaccine Institute, South Korea. Accelerating the development of a preventive vaccine requires a better understanding of MERS epidemiology, transmission, and pathogenesis in humans and animals. A combination of rodent and nonhuman primate models should be considered in evaluating and developing preventive and therapeutic vaccine candidates. Dromedary camels should be considered for the development of veterinary vaccines. Several vaccine technology platforms targeting the MERS-CoV spike protein were discussed. Mechanisms to maximize investment, provide robust data, and affect public health are urgently needed.

Collaboration


Dive into the Kayvon Modjarrad's collaboration.

Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Boyd

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter Abbink

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafael De La Barrera

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

David Jetton

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafael A. Larocca

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Richard G. Jarman

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge