Kazi M. Zakir Hossain
University of Nottingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazi M. Zakir Hossain.
Biomacromolecules | 2014
Kazi M. Zakir Hossain; Muhammad Sami Hasan; Daniel Boyd; C.D. Rudd; Ifty Ahmed; Wim Thielemans
Polylactic acid (PLA) fibers were produced with an average diameter of 11.2 (± 0.9) μm via a melt-drawing process. The surface of the PLA fibers was coated with blends of cellulose nanowhiskers (CNWs) (65 to 95 wt %) and polyvinyl acetate (PVAc). The CNWs bound to the smooth PLA fiber surface imparted roughness, with the degree of roughness depending on the coating blend used. The fiber tensile modulus increased 45% to 7 GPa after coating with 75 wt % CNWs compared with the uncoated PLA fibers, and a significant increase in the fiber moisture absorption properties at different humidity levels was also determined. Cytocompatibility studies using NIH-3T3 mouse fibroblast cells cultured onto CNWs-coated PLA surface revealed improved cell adhesion compared with the PLA control, making this CNW surface treatment applicable for biomedical and tissue engineering applications. Initial studies also showed complete cell coverage within 2 days.
Progress in Biomaterials | 2015
Kazi M. Zakir Hossain; Uresha Patel; Ifty Ahmed
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented.
Soft Matter | 2012
Kazi M. Zakir Hossain; Latifah Jasmani; Ifty Ahmed; Andrew J. Parsons; Colin A. Scotchford; Wim Thielemans; C.D. Rudd
Flexible composite films with a high cellulose nanowhisker (CNW) content of up to 75% by weight were produced by casting from aqueous solution with water soluble cellosize (CS). The surface topography of the films displayed an aggregated morphology influencing the surface roughness and light transparency properties of the blends. Using fluorescently labelled CS, we were able to determine the extent of aggregation in the composites which indicated that up to 13% of CNWs can be homogeneously blended with CS, above which larger CNW aggregates occur. However, even in a somewhat aggregated form, the CNWs still form a percolated network and appear to be homogeneously dispersed as larger aggregated entities. The composite CNW–CS films further exhibited improved thermal stability compared to both the CNWs and CS alone with decomposition temperatures shifting from 261 °C for CNWs and 313 °C for CS to 361 °C for blends containing 75% CNWs. Surface induced crystallisation of CS by CNWs was also found with higher crystallinity for the composite films than for the individual constituents. Due to the reinforcing effect of CNWs within the matrix, an increase in the tensile strength (294%) and modulus (2004%) was observed for the blend containing 75% CNWs compared to the pure CS film (tensile strength ∼12.23 MPa and modulus ∼0.39 GPa). The storage modulus of all the flexible blends/films investigated also revealed an increasing trend with the CNW content across the temperature region explored. The swelling kinetics of the CNW–CS blends in phosphate buffered saline (PBS) media at 37 °C were also investigated and CNWs were shown to have a strong influence on reducing the equilibrium swelling capacity and initial swelling rate of the blends.
Journal of Tissue Engineering | 2017
Towhidul Islam; Reda M. Felfel; Ensanya A. Abou Neel; David M. Grant; Ifty Ahmed; Kazi M. Zakir Hossain
An overview of the formation of calcium phosphate under in vitro environment on the surface of a range of bioactive materials (e.g. from silicate, borate, and phosphate glasses, glass-ceramics, bioceramics to metals) based on recent literature is presented in this review. The mechanism of bone-like calcium phosphate (i.e. hydroxyapatite) formation and the test protocols that are either already in use or currently being investigated for the evaluation of the bioactivity of biomaterials are discussed. This review also highlights the effect of chemical composition and surface charge of materials, types of medium (e.g. simulated body fluid, phosphate-buffered saline and cell culture medium) and test parameters on their bioactivity performance. Finally, a brief summary of the biomedical applications of these newly formed calcium phosphate (either in the form of amorphous or apatite) is presented.
Journal of Biomaterials Applications | 2018
Dhanak Gupta; David M. Grant; Kazi M. Zakir Hossain; Ifty Ahmed; Virginie Sottile
Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering.
Journal of Functional Biomaterials | 2015
Kazi M. Zakir Hossain; Chenkai Zhu; Reda M. Felfel; Nusrat Sharmin; Ifty Ahmed
Tubular scaffolds with aligned polylactic acid (PLA) fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc) solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP) content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM) revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT) analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS) media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line) revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.
Acta Biomaterialia | 2018
Kazi M. Zakir Hossain; Uresha Patel; Andrew R. Kennedy; Laura Macri-Pellizzeri; Virginie Sottile; David M. Grant; Brigitte E. Scammell; Ifty Ahmed
Orthobiologics is a rapidly advancing field utilising cell-based therapies and biomaterials to enable the body to repair and regenerate musculoskeletal tissues. This paper reports on a cost-effective flame spheroidisation process for production of novel porous glass microspheres from calcium phosphate-based glasses to encapsulate and deliver stem cells. Careful selection of the glass and pore-forming agent, along with a manufacturing method with the required processing window enabled the production of porous glass microspheres via a single-stage manufacturing process. The morphological and physical characterisation revealed porous microspheres with tailored surface and interconnected porosity (up to 76 ± 5%) with average pore size of 55 ± 8 µm and surface areas ranging from 0.34 to 0.9 m2 g-1. Furthermore, simple alteration of the processing parameters produced microspheres with alternate unique morphologies, such as with solid cores and surface porosity only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. Furthermore, cytocompatibility of the microspheres was assessed using human mesenchymal stem cells via direct cell culture experiments and analysis confirmed that they had migrated to within the centre of the microspheres. The novel microspheres developed have huge potential for tissue engineering and regenerative medicine applications. STATEMENT OF SIGNIFICANCE This manuscript highlights a simple cost-effective one-step process for manufacturing porous calcium phosphate-based glass microspheres with varying control over surface pores and fully interconnected porosity via a flame spheroidisation process. Moreover, a simple alteration of the processing parameters can produce microspheres which have a solid core with surface pores only. The tuneable porosity enabled control over their surface area, degradation profiles and hence ion release rates. The paper also shows that stem cells not only attach and proliferate but more importantly migrate to within the core of the porous microspheres, highlighting applications for bone tissue engineering and regenerative medicine.
Acta Biomaterialia | 2017
Uresha Patel; R.M. Moss; Kazi M. Zakir Hossain; Andrew R. Kennedy; Emma R. Barney; Ifty Ahmed; Alex C. Hannon
Neutron diffraction, 23Na and 31P NMR, and FTIR spectroscopy have been used to investigate the structural effects of substituting CaO with SrO in a 40P2O5·(16-x)CaO·20Na2O·24MgO·xSrO glass, where x is 0, 4, 8, 12 and 16mol%. The 31P solid-state NMR results showed similar amounts of Q1 and Q2 units for all of the multicomponent glasses investigated, showing that the substitution of Sr for Ca has no effect on the phosphate network. The M-O coordinations (M=Mg, Ca, Sr, Na) were determined for binary alkali and alkaline earth metaphosphates using neutron diffraction and broad asymmetric distributions of bond length were observed, with coordination numbers that were smaller and bond lengths that were shorter than in corresponding crystals. The Mg-O coordination number was determined most reliably as 5.0(2). The neutron diffraction results for the multicomponent glasses are consistent with a structural model in which the coordination of Ca, Sr and Na is the same as in the binary metaphosphate glass, whereas there is a definite shift of Mg-O bonds to longer distance. There is also a small but consistent increase in the Mg-O coordination number and the width of the distribution of Mg-O bond lengths, as Sr substitutes for Ca. Functional properties, including glass transition temperatures, thermal processing windows, dissolution rates and ion release profiles were also investigated. Dissolution studies showed a decrease in dissolution rate with initial addition of 4mol% SrO, but further addition of SrO showed little change. The ion release profiles followed a similar trend to the observed dissolution rates. The limited changes in structure and dissolution rates observed for substitution of Ca with Sr in these fixed 40mol% P2O5 glasses were attributed to their similarities in terms of ionic size and charge. STATEMENT OF SIGNIFICANCE Phosphate based glasses are extremely well suited for the delivery of therapeutic ions in biomedical applications, and in particular strontium plays an important role in the treatment of osteoporosis. We show firstly that the substitution of strontium for calcium in bioactive phosphate glasses can be used to control the dissolution rate of the glass, and hence the rate at which therapeutic ions are delivered. We then go on to examine in detail the influence of Sr/Ca substitution on the atomic sites in the glass, using advanced structural probes, especially neutron diffraction. The environments of most cations in the glass are unaffected by the substitution, with the exception of Mg, which becomes more disordered.
Archive | 2016
Kazi M. Zakir Hossain; Reda M. Felfel; David M. Grant; Ifty Ahmed
An overview of the research conducted utilising phosphate glass fibres (PGFs), their manufacturing processes and utilisation potential for biomedical applications is presented in this chapter. Phosphate glasses of varying compositions in the form of fibrous structures alone and as fibrous reinforcements within composites are discussed. This chapter also highlights the methodologies used for the manufacture of these resorbable glass fibres and their composites. The advantages of using bioresorbable fibres in terms of their mechanical, dissolution, ion release, and in vitro and in vivo biocompatibility properties for the replacement, augmentation, guidance and growth of both hard and soft tissue in repair applications are also presented.
Carbohydrate Polymers | 2019
Reda M. Felfel; Mark J. Gideon-Adeniyi; Kazi M. Zakir Hossain; George A.F. Roberts; David M. Grant
This study aimed to explore the correlation between mechanical and structural properties of chitosan-agarose blend (Ch-Agrs) scaffolds. Porosity of Ch-Agrs scaffolds was constant at 93%, whilst pore sizes varied between 150 and 550 μm. Pore sizes of the blend scaffolds (150-300 μm) were significantly smaller than for either agarose or chitosan scaffolds alone (ca. 500 μm). Ch50-Agrs50 blend scaffold showed the highest compressive modulus and strength values (4.5 ± 0.4 and 0.35 ± 0.03 MPa) due to reduction in the pore size. The presence of agarose improved the stability of the blends in aqueous media. The increase in compressive properties and residual weight after the TGA test, combined with the reduction in the swelling percentage of the blend scaffolds suggested an interaction between chitosan and agarose via hydrogen bonding which was confirmed using FTIR analysis. All wet blend scaffolds exhibited instant recovery after full compression. This study shows the potential of Ch-Agrs scaffolds for repairing soft tissue.