Kazimierz Więski
University of Houston
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazimierz Więski.
Ecosystems | 2014
Kazimierz Więski; Steven C. Pennings
Tidal wetlands are threatened by global changes related not only to sea level rise but also to altered weather patterns. To predict consequences of these changes on coastal communities, it is necessary to understand how temporally varying abiotic conditions drive wetland production. In 2000–2011, we conducted annual surveys of Spartina alterniflora biomass in tidal marshes at nine sites in and around the Altamaha river estuary on the coast of Georgia, USA. End of the year live biomass was assessed in the creekbank and midmarsh zones to estimate annual net primary production (ANPP). River discharge was the most important driver of S. alterniflora ANPP, especially in creekbank vegetation. Increased river discharge reduces water column salinity, and this was most likely the proximate driver of increased production. In the midmarsh zone, the patterns were less distinct, although river discharge was again the best predictor, but maximum temperature had similar predictive ability. In contrast to results from terrestrial grasslands, we found no consistent evidence for a sharply delimited critical period for any climate driver in the tidal marsh, which indicates that plant growth was responsive to abiotic drivers at any time during the growing season. Results were broadly consistent across multiple sites within a geographic region. Our results differ from previous analyses of production in S. alterniflora marshes, which either identified oceanic drivers of S. alterniflora production or were unable to identify any drivers, likely because the low-latitude sites we studied were hotter and more affected by river discharge than those in previous studies.
Estuaries and Coasts | 2012
Juan M. Jiménez; Kazimierz Więski; Laurie B. Marczak; Chuan-Kai Ho; Steven C. Pennings
Top–down and bottom–up effects interact to structure communities, especially in salt marshes, which contain strong gradients in bottom–up drivers such as salinity and nutrients. How omnivorous consumers respond to variation in prey availability and plant quality is poorly understood. We used a mesocosm experiment to examine how salinity, nutrients, an omnivore (the katydid Orchelimum fidicinium) and an herbivore (the planthopper Prokelisia spp.) interacted to structure a simplified salt marsh food web based on the marsh grass Spartina alterniflora. Bottom–up effects were strong, with both salinity and nutrients decreasing leaf C/N and increasing Prokelisia abundance. Top–down effects on plants were also strong, with both the herbivore and the omnivore affecting S. alterniflora traits and growth, especially when nutrients or salt were added. In contrast, top–down control by Orchelimum of Prokelisia was independent of bottom–up conditions. Orchelimum grew best on a diet containing both Spartina and Prokelisia, and in contrast to a sympatric omnivorous crab, did not shift to an animal-based diet when prey were present, suggesting that it is constrained to consume a mixed diet. These results suggest that the trophic effects of omnivores depend on omnivore behavior, dietary constraints, and ability to suppress lower trophic levels, and that omnivorous katydids may play a previously unrecognized role in salt marsh food webs.
Journal of Ecology | 2013
Laurie B. Marczak; Kazimierz Więski; Robert F. Denno; Steven C. Pennings
Summary 1. An important recent advance in food web ecology has been the application of theory regarding spatial gradients to studies of the factors that affect animal population dynamics. Building on extensive studies of the Spartina alterniflora food web at the local scale, we hypothesized that geographic variation in S. alterniflora quality is an important bottom-up control on food web structure and that geographic variation in S. alterniflora quality would interact with the presence of predators and top omnivores to mediate herbivore densities. 2. We employed a four-factor fully crossed experiment in which we (i) collected plants from highand low-latitude locations and grew them in a common garden and varied (ii) plant fertilization status (mimicking the plant quality differences due to marsh elevation), (iii) mesopredator density and (iv) omnivore density. 3. Our results suggest that the single most important factor mediating insect herbivore densities is local variation in plant quality – induced in our experiment by fertilization and demonstrated repeatedly as a consequence of marsh elevation. 4. Top-down effects were generally weak and in those cases where predators did exert a significant suppressing effect on herbivores, that impact was itself mediated by host-plant characteristics. 5. Finally, despite observed variation in plant quality with latitude, and the separately measurable effects of this variation on herbivores, geographic-scale variation in plant quality was overwhelmed by local conditions in our experiments. 6. Synthesis. We suggest that a first-order understanding of variation across large latitudinal ranges in the Spartina alterniflora arthropod food web must begin with local variation in plant quality, which provides strong bottom-up forcing to herbivore populations. A second-order understanding of the arthropod food web should consider the role of predation in controlling herbivores feeding on lowquality plants. Finally, while latitudinal variation in plant quality probably explains some variation in herbivore densities, it is probably more of a response to herbivore pressure than a driver of the herbivore dynamics. Although extrapolating from local to geographic scales presents multiple challenges, it is an essential task in order for us to develop an understanding that is general rather than site-specific.
PLOS ONE | 2015
Hongyu Guo; Scott A. Chamberlain; Eran Elhaik; Inder Jalli; Alana-Rose Lynes; Laurie B. Marczak; Niv Sabath; Amy Vargas; Kazimierz Więski; Emily M. Zelig; Steven C. Pennings
In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in ecosystems with low species diversity, functional and phylogenetic approaches may not provide additional insight over a species-based approach.
Wetlands | 2012
Christine Ewers; Anika Beiersdorf; Kazimierz Więski; Steven C. Pennings; Martin Zimmer
Predation on detritivores is expected to decelerate detritivore-mediated decomposition processes. In field mesocosms, we studied whether the decomposition of leaf and needle litter of live oak (Quercus virginiana) and loblolly pine (Pinus taeda), respectively, was affected by saltmarsh detritivores (Gastropoda: Littoraria irrorata and Melampus bidentatus) and predacious omnivores (Decapoda: Armases cinereum) and their interactions. Both crabs and snails alone increased decomposition (mass loss) rates of oak litter, while a combination of both resulted in the same mass loss as in animal-free controls, probably due to crabs feeding on snails rather than litter. Neither crabs nor snails alone affected mass loss of pine litter, but a combination of both significantly increased decomposition rates. Irrespective of the litter type, crabs significantly increased mortality of the snails but gained biomass only on pine litter and only when detritivorous snails were present. Our findings suggest that unidirectional facilitation of omnivorous semi-terrestrial crabs by their detritivorous prey (saltmarsh snails) promotes the decomposition of low-quality (pine) litter. On high-quality (oak) litter, by contrast, negative effects of the predator prevail, resulting in a drop of decomposition rates when crabs were present, probably owing to predation on detritivorous snails. Thus, the effects of predator/prey-interactions on decomposition processes are context-dependent and are controlled by resource quality.
Ecology | 2009
Steven C. Pennings; Chuan-Kai Ho; Cristiano S. Salgado; Kazimierz Więski; Nilam Davé; Amy Kunza; Elizabeth L. Wason
Geophysical Research Letters | 2009
Zoe J. Hughes; Duncan M. FitzGerald; Carol Wilson; Steve Pennings; Kazimierz Więski; Amala Mahadevan
Estuaries and Coasts | 2010
Kazimierz Więski; Hongyu Guo; Christopher Craft; Steven C. Pennings
Ecology | 2011
Laurie B. Marczak; Chuan-Kai Ho; Kazimierz Więski; Huy D. Vu; Robert F. Denno; Steven C. Pennings
Ecography | 2014
Kazimierz Więski; Steven C. Pennings