Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazu Nakazawa is active.

Publication


Featured researches published by Kazu Nakazawa.


Nature Neuroscience | 2010

Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes

Juan E. Belforte; Veronika Zsiros; Elyse R Sklar; Zhihong Jiang; Gu Yu; Yuqing Li; Elizabeth M. Quinlan; Kazu Nakazawa

Cortical GABAergic dysfunction may underlie the pathophysiology of psychiatric disorders, including schizophrenia. Here, we characterized a mouse strain in which the essential NR1 subunit of the NMDA receptor (NMDAR) was selectively eliminated in 40–50% of cortical and hippocampal interneurons in early postnatal development. Consistent with the NMDAR hypofunction theory of schizophrenia, distinct schizophrenia-related symptoms emerged after adolescence, including novelty-induced hyperlocomotion, mating and nest-building deficits, as well as anhedonia-like and anxiety-like behaviors. Many of these behaviors were exacerbated by social isolation stress. Social memory, spatial working memory and prepulse inhibition were also impaired. Reduced expression of glutamic acid decarboxylase 67 and parvalbumin was accompanied by disinhibition of cortical excitatory neurons and reduced neuronal synchrony. Postadolescent deletion of NR1 did not result in such abnormalities. These findings suggest that early postnatal inhibition of NMDAR activity in corticolimbic GABAergic interneurons contributes to the pathophysiology of schizophrenia-related disorders.


Nature Reviews Neuroscience | 2004

NMDA receptors, place cells and hippocampal spatial memory

Kazu Nakazawa; Thomas J. McHugh; Matthew A. Wilson; Susumu Tonegawa

N-methyl-D-aspartate receptors (NMDARs) in the rodent hippocampus have been shown to be essential for spatial learning and memory, and for the induction of long-term synaptic plasticity at various hippocampal synapses. In this review, we examine the evidence concerning the role of NMDARs in hippocampal memory processes, with an emphasis on the function of NMDARs in area CA1 of the hippocampus in memory acquisition, and the unique role of NMDARs in area CA3 in the rapid acquisition and associative retrieval of spatial information. Finally, we discuss the data that have emerged from in vivo hippocampal recording studies that indicate that the activity of hippocampal place cells during behaviour is an expression of a memory trace.


Neuron | 2003

NMDA receptor-dependent ocular dominance plasticity in adult visual cortex

Nathaniel B. Sawtell; Mikhail Y. Frenkel; Benjamin D. Philpot; Kazu Nakazawa; Susumu Tonegawa; Mark F. Bear

The binocular region of mouse visual cortex is strongly dominated by inputs from the contralateral eye. Here we show in adult mice that depriving the dominant contralateral eye of vision leads to a persistent, NMDA receptor-dependent enhancement of the weak ipsilateral-eye inputs. These data provide in vivo evidence for metaplasticity as a mechanism for binocular competition and demonstrate that an ocular dominance shift can occur solely by the mechanisms of response enhancement. They also show that adult mouse visual cortex has a far greater potential for experience-dependent plasticity than previously appreciated. These insights may force a revision in how data on ocular dominance plasticity in mutant mice have been interpreted.


Neuron | 2003

Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience

Kazu Nakazawa; Linus D. Sun; Michael C. Quirk; Laure Rondi-Reig; Matthew A. Wilson; Susumu Tonegawa

Lesion and pharmacological intervention studies have suggested that in both human patients and animals the hippocampus plays a crucial role in the rapid acquisition and storage of information from a novel one-time experience. However, how the hippocampus plays this role is poorly known. Here, we show that mice with NMDA receptor (NR) deletion restricted to CA3 pyramidal cells in adulthood are impaired in rapidly acquiring the memory of novel hidden platform locations in a delayed matching-to-place version of the Morris water maze task but are normal when tested with previously experienced platform locations. CA1 place cells in the mutant animals had place field sizes that were significantly larger in novel environments, but normal in familiar environments relative to those of control mice. These results suggest that CA3 NRs play a crucial role in rapid hippocampal encoding of novel information for fast learning of one-time experience.


The Journal of Neuroscience | 2010

Loss of GluN2B-Containing NMDA Receptors in CA1 Hippocampus and Cortex Impairs Long-Term Depression, Reduces Dendritic Spine Density, and Disrupts Learning

Jonathan L. Brigman; Tara Wright; Giuseppe Talani; Shweta Prasad-Mulcare; Seiichiro Jinde; Gail K. Seabold; Poonam Mathur; Margaret I. Davis; Roland Bock; Richard M. Gustin; Roger J. Colbran; Veronica A. Alvarez; Kazu Nakazawa; Eric Delpire; David M. Lovinger; Andrew Holmes

NMDA receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A–GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated EPSCs than nonmutant controls and were insensitive to GluN2B but not NMDAR antagonism. A subsaturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. An NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons compared with controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, and pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment.


Neuroscience | 2011

Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors

Kimberly M. Christian; Angela D. Miracle; Cara L. Wellman; Kazu Nakazawa

Chronic stress induces dendritic retraction in the hippocampal CA3 subregion, but the mechanisms responsible for this retraction and its impact on neural circuitry are not well understood. To determine the role of NMDA (N-methyl-d-aspartic acid) receptor (NMDAR)-mediated signaling in this process, we compared the effects of chronic immobilization stress (CIS) on hippocampal dendritic morphology, hypothalamic-pituitary-adrenal (HPA) axis activation, and anxiety-related and hippocampus-dependent behaviors, in transgenic male mice in which the NMDAR had been selectively deleted in CA3 pyramidal cells and in non-mutant littermates. We found that CIS exposure for 10 consecutive days in non-mutant mice effectively induces HPA axis activation and dendritic retraction of CA3 short-shaft pyramidal neurons, but not CA3 long-shaft pyramidal neurons, suggesting a differential cellular stress response in this region. Dendritic reorganization of short-shaft neurons occurred throughout the longitudinal axis of the hippocampus and, in particular, in the ventral pole of this structure. We also observed a robust retraction of dendrites in dorsal CA1 pyramidal neurons in the non-mutant C57BL/6 mouse strain. Strikingly, chronic stress-induced dendritic retraction was not evident in any of the neurons in either CA3 or CA1 in the mutant mice that had a functional lack of NMDARs restricted to CA3 pyramidal neurons. Interestingly, the prevention of dendritic retraction in the mutant mice had a minimal effect on HPA axis activation and behavioral alterations that were induced by chronic stress. These data support a role for NMDAR-dependent glutamatergic signaling in CA3 in the cell-type specific induction of dendritic retraction in two hippocampal subregions following chronic stress.


The Journal of Neuroscience | 2010

eIF2α phosphorylation-dependent translation in CA1 pyramidal cells impairs hippocampal memory consolidation without affecting general translation

Zhihong Jiang; Juan E. Belforte; Yuan Lu; Yoko Yabe; James Pickel; Carolyn Beebe Smith; Hyun-Soo Je; Bai Lu; Kazu Nakazawa

Protein synthesis inhibitor antibiotics are widely used to produce amnesia, and have been recognized to inhibit general or global mRNA translation in the basic translational machinery. For instance, anisomycin interferes with protein synthesis by inhibiting peptidyl transferase or the 80S ribosomal function. Therefore, de novo general or global protein synthesis has been thought to be necessary for long-term memory formation. However, it is unclear which mode of translation—gene-specific translation or general/global translation—is actually crucial for the memory consolidation process in mammalian brains. Here, we generated a conditional transgenic mouse strain in which double-strand RNA-dependent protein kinase (PKR)-mediated phosphorylation of eIF2α, a key translation initiation protein, was specifically increased in hippocampal CA1 pyramidal cells by the chemical inducer AP20187. Administration of AP20187 significantly increased activating transcription factor 4 (ATF4) translation and concomitantly suppressed CREB-dependent pathways in CA1 cells; this led to impaired hippocampal late-phase LTP and memory consolidation, with no obvious reduction in general translation. Conversely, inhibition of general translation by low-dose anisomycin failed to block hippocampal-dependent memory consolidation. Together, these results indicated that CA1-restricted genetic manipulation of particular mRNA translations is sufficient to impair the consolidation and that consolidation of memories in CA1 pyramidal cells through eIF2α dephosphorylation depends more on transcription/translation of particular genes than on overall levels of general translation. The present study sheds light on the critical importance of gene-specific translations for hippocampal memory consolidation.


Nature Neuroscience | 2013

GluN2B in corticostriatal circuits governs choice learning and choice shifting

Jonathan L. Brigman; Rachel A. Daut; Tara Wright; Ozge Gunduz-Cinar; Carolyn Graybeal; Margaret I. Davis; Zhihong Jiang; Lisa M. Saksida; Seiichiro Jinde; Matthew Pease; Timothy J. Bussey; David M. Lovinger; Kazu Nakazawa; Andrew Holmes

A choice that reliably produces a preferred outcome can be automated to liberate cognitive resources for other tasks. Should an outcome become less desirable, behavior must adapt in parallel or it becomes perseverative. Corticostriatal systems are known to mediate choice learning and flexibility, but the molecular mechanisms of these processes are not well understood. We integrated mouse behavioral, immunocytochemical, in vivo electrophysiological, genetic and pharmacological approaches to study choice. We found that the dorsal striatum (DS) was increasingly activated with choice learning, whereas reversal of learned choice engaged prefrontal regions. In vivo, DS neurons showed activity associated with reward anticipation and receipt that emerged with learning and relearning. Corticostriatal or striatal deletion of Grin2b (encoding the NMDA-type glutamate receptor subunit GluN2B) or DS-restricted GluN2B antagonism impaired choice learning, whereas cortical Grin2b deletion or OFC GluN2B antagonism impaired shifting. Our convergent data demonstrate how corticostriatal GluN2B circuits govern the ability to learn and shift choice behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Essential function of α-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse

Heather L. Hinds; Ivan Goussakov; Kazu Nakazawa; Susumu Tonegawa; Vadim Y. Bolshakov

A significant fraction of the total calcium/calmodulin-dependent protein kinase II (CaMKII) activity in neurons is associated with synaptic connections and is present in nerve terminals, thus suggesting a role for CaMKII in neurotransmitter release. To determine whether CaMKII regulates neurotransmitter release, we generated and analyzed knockout mice in which the dominant α-isoform of CaMKII was specifically deleted from the presynaptic side of the CA3-CA1 hippocampal synapse. Conditional CA3 α-CaMKII knockout mice exhibited an unchanged basal probability of neurotransmitter release at CA3-CA1 synapses but showed a significant enhancement in the activity-dependent increase in probability of release during repetitive presynaptic stimulation, as was shown with the analysis of unitary synaptic currents. These data indicate that α-CaMKII serves as a negative activity-dependent regulator of neurotransmitter release at hippocampal synapses and maintains synapses in an optimal range of release probabilities necessary for normal synaptic operation.


Biological Psychiatry | 2013

Social Isolation Exacerbates Schizophrenia-Like Phenotypes via Oxidative Stress in Cortical Interneurons

Zhihong Jiang; Gregory R. Rompala; Shuqin Zhang; Rita M. Cowell; Kazu Nakazawa

BACKGROUND Our previous studies indicated that N-methyl-D-aspartate receptor (NMDAR) deletion from a subset of corticolimbic interneurons in the mouse brain during early postnatal development is sufficient to trigger several behavioral and pathophysiological features resembling the symptoms of human schizophrenia. Interestingly, many of these behavioral phenotypes are exacerbated by social isolation stress. However, the mechanisms underlying the exacerbating effects of social isolation are unclear. METHODS With γ-aminobutyric acid-ergic interneuron-specific NMDAR hypofunction mouse model (Ppp1r2-Cre/fGluN1 knockout [KO] mice), we investigated whether oxidative stress is implicated in the social isolation-induced exacerbation of schizophrenia-like phenotypes and further explored the underlying mechanism of elevated oxidative stress in KO mice. RESULTS The reactive oxygen species (ROS) level in the cortex of group-housed KO mice was normal at 8 weeks although increased at 16 weeks old. Postweaning social isolation (PWSI) augmented the ROS levels in KO mice at both ages, which was accompanied by the onset of behavioral phenotype. Chronic treatment with apocynin, an ROS scavenger, abolished markers of oxidative stress and partially alleviated schizophrenia-like behavioral phenotypes in KO mice. Markers of oxidative stress after PWSI were especially prominent in cortical parvalbumin (PV)-positive interneurons. The vulnerability of PV interneurons to oxidative stress was associated with downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial energy metabolism and antioxidation. CONCLUSIONS These results suggest that a PWSI-mediated impairment in antioxidant defense mechanisms, presumably mediated by PGC-1α downregulation in the NMDAR-deleted PV-positive interneurons, results in oxidative stress, which, in turn, might contribute to exacerbation of schizophrenia-like behavioral phenotypes.

Collaboration


Dive into the Kazu Nakazawa's collaboration.

Top Co-Authors

Avatar

Susumu Tonegawa

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhihong Jiang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan E. Belforte

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Veronika Zsiros

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhito Nakao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gregory R. Rompala

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James Pickel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuqin Zhang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge