Kazuaki Nishii
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazuaki Nishii.
Journal of Climate | 2011
Kazuaki Nishii; Hisashi Nakamura; Yvan J. Orsolini
AbstractPrevious studies have suggested the importance of blocking high (BH) development for the occurrence of stratospheric sudden warming (SSW), while there is a recent study that failed to identify their statistical linkage. Through composite analysis applied to high-amplitude anticyclonic anomaly events observed around every grid point over the extratropical Northern Hemisphere, the present study reveals a distinct geographical dependence of BH influence on the upward propagation of planetary waves (PWs) into the stratosphere. Tropospheric BHs that develop over the Euro-Atlantic sector tend to enhance upward PW propagation, leading to the warming in the polar stratosphere and, in some cases, to major SSW events. In contrast, the upward PW propagation tends to be suppressed by BHs developing over the western Pacific and the Far East, resulting in the polar stratospheric cooling. This dependence is found to arise mainly from the sensitivity of the interference between the climatological PWs and upward-p...
Climate Dynamics | 2014
Alexandre Laîné; Hisashi Nakamura; Kazuaki Nishii; Takafumi Miyasaka
It has been pointed out that climatological-mean precipitation-evaporation difference (P–E) should increase under global warming mainly through the increasing saturation level of moisture. This study focuses on evaporation changes under global warming and their dependency on the direct warming effect, on the basis of future projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Over most of the tropical, subtropical and midlatitude regions, the direct contribution from surface temperature increase is found to dominate the projected increase in evaporation. This contribution is nevertheless offset partially, especially over the oceans, by contributions from weakening surface winds and increasing near-surface relative humidity. Greater warming of surface air than of the sea surface also acts to reduce surface evaporation, by reducing both the exchange coefficient and humidity contrast at the surface. Though generally of secondary importance, this contribution is the dominant factor over the subpolar oceans. Over the polar oceans, the effect of sea-ice retreat dominantly contributes to the evaporation increase in winter, whereas the reduced exchange coefficient and surface humidity contrast coupled with the sea-ice retreat account for most of the response during summertime. Over the continents, changes in the surface exchange coefficient, reflecting changes in soil moisture and vegetation among other factors, are important to modulate the direct effects of the warming and the generally reduced surface air relative humidity.
Geophysical Research Letters | 2004
Kazuaki Nishii; Hisashi Nakamura
In late September of 2002, the first recorded major sudden stratospheric warming occurred over Antarctica, lead- ing to sudden breakdown of the cold polar vortex and the col- lapse of the ozone hole. Our diagnosis reveals that the warming was associated with propagation of a Rossby wavepacket from a prominent tropospheric blocking ridge over the South Atlan- tic into the stratospheric polar-night jet that had already weak- ened unusually. The blocking developed from anomalies that had formed as a component of another Rossby wavetrain that appeared to be forced in mid-September by anomalous deep cumulus convection in the South Pacific Convergence Zone.
Journal of Climate | 2015
Ryusuke Masunaga; Hisashi Nakamura; Takafumi Miyasaka; Kazuaki Nishii; Youichi Tanimoto
AbstractMesoscale structures of the wintertime marine atmospheric boundary layer (MABL) as climatological imprints of oceanic fronts within the Kuroshio–Oyashio Extension (KOE) region east of Japan are investigated by taking advantage of high horizontal resolution of the ERA-Interim global atmospheric reanalysis data, for which the resolution of sea surface temperature (SST) data has been improved. These imprints, including locally enhanced sensible and latent heat fluxes and local maxima in cloudiness and precipitation in association with locally strengthened surface-wind convergence in the vicinities of SST fronts along the warm Kuroshio Extension and cool Oyashio to its north, are also identified in high-resolution satellite data. In addition to these mesoscale MABL features, meridionally confined near-surface baroclinic zones and zonally oriented sea level pressure (SLP) minima associated with the dual SST fronts are represented in ERA-Interim only in the period of high-resolution SST, but those impri...
Scientific Reports | 2015
Atsuyoshi Manda; Hisashi Nakamura; Naruhiko Asano; Satoshi Iizuka; Toru Miyama; Qoosaku Moteki; Mayumi K. Yoshioka; Kazuaki Nishii; Takafumi Miyasaka
Monsoonal airflow from the tropics triggers torrential rainfall over coastal regions of East Asia in summer, bringing flooding situations into areas of growing population and industries. However, impacts of rapid seasonal warming of the shallow East China Sea ECS and its pronounced future warming upon extreme summertime rainfall have not been explored. Here we show through cloudresolving atmospheric model simulations that observational tendency for torrential rainfall events over western Japan to occur most frequently in July cannot be reproduced without the rapid seasonal warming of ECS. The simulations also suggest that the future ECS warming will increase precipitation substantially in such an extreme event as observed in midJuly 2012 and also the likelihood of such an event occurring in June. A need is thus urged for reducing uncertainties in future temperature projections over ECS and other marginal seas for better projections of extreme summertime rainfall in the surrounding areas.
Journal of Climate | 2016
Ryusuke Masunaga; Hisashi Nakamura; Takafumi Miyasaka; Kazuaki Nishii; Bo Qiu
AbstractThe Kuroshio Extension (KE) fluctuates between its different dynamic regimes on (quasi) decadal time scales. In its stable (unstable) regime, the KE jet is strengthened (weakened) and less (more) meandering. The present study investigates wintertime mesoscale atmospheric structures modulated under the changing KE regimes, as revealed in high-resolution satellite data and data from a particular atmospheric reanalysis (ERA-Interim). In the unstable KE regime, a positive anomaly in sea surface temperature (SST) to the north of the climatological KE jet accompanies positive anomalies in upward heat fluxes from the ocean, surface wind convergence, and cloudiness. As revealed in the atmospheric reanalysis, these positive anomalies coincide with local lowering of sea level pressure, weaker vertical wind shear, warming and thickening of the marine atmospheric boundary layer (MABL), anomalous ascent, and convective precipitation. In the stable KE regime, by contrast, the corresponding imprints of sharp SST...
Climate Dynamics | 2015
Kazuaki Nishii; Hisashi Nakamura; Yvan J. Orsolini
Model performance and future projection of Arctic summertime storm-track activity and associated background states are assessed on the basis of Coupled Model Intercomparison Project Phase 3 (CMIP3)/5 (CMIP5) climate models. Despite some improvement in the CMIP5 models relative to the CMIP3 models, most of the climate models underestimate summertime storm-track activity over the Arctic Ocean compared to six reanalysis data sets as measured locally as the variance of subweekly fluctuations of sea level pressure. Its large inter-model spread (i.e., model-to-model differences) is correlated with that of the intensity of the Beaufort Sea High and the lower-tropospheric westerlies in the Arctic region. Most of the CMIP3/5 models project the enhancement of storm-track activity over the Arctic Ocean off the eastern Siberian and Alaskan coasts, the region called the Arctic Ocean Cyclone Maximum, in association with the strengthening of the westerlies in the warmed climate. A model with stronger enhancement of the storm-track activity tends to accompany stronger land-sea contrast in surface air temperature across the Siberian coast, which reflects greater surface warming over the continent and slower warming over the Arctic Ocean. Other processes, however, may also be likely to contribute to the future changes of the storm-track activity, which gives uncertainty in the projection by multiple climate models. Our analysis suggests that further clarification of those processes that influence storm-track activity over the Arctic is necessary for more reliable future projections of the Arctic climate.
Journal of Climate | 2014
Satoru Okajima; Hisashi Nakamura; Kazuaki Nishii; Takafumi Miyasaka; Akira Kuwano-Yoshida
AbstractSets of atmospheric general circulation model (AGCM) experiments are conducted to assess the importance of prominent positive anomalies in sea surface temperature (SST) observed over the midlatitude North Pacific in forcing a persistent basin-scale anticyclonic circulation anomaly and its downstream influence in 2011 summer and autumn. The anticyclonic anomaly observed in October is well reproduced as a robust response of an AGCM forced only with the warm SST anomaly associated with the poleward-shifted oceanic frontal zone in the midlatitude Pacific. The equivalent barotropic anticyclonic anomaly over the North Pacific is maintained under strong transient eddy feedback forcing associated with the poleward-deflected storm track. As the downstream influence of the anomaly, abnormal warmth and dryness observed over the northern United States and southern Canada in October are also reproduced to some extent. The corresponding AGCM response over the North Pacific to the tropical SST anomalies is simil...
Journal of Climate | 2016
Sho Tanaka; Kazuaki Nishii; Hisashi Nakamura
AbstractThe western Pacific (WP) pattern, characterized by north–south dipolar anomalies in pressure over the Far East and western North Pacific, is known as one of the dominant teleconnection patterns in the wintertime Northern Hemisphere. Composite analysis reveals that monthly height anomalies exhibit baroclinic structure with their phase lines tilting southwestward with height in the lower troposphere. The anomalies can thus yield not only a poleward heat flux across the climatological thermal gradient across the strong Pacific jet but also a westward heat flux across the climatological thermal gradient between the North Pacific and the cooler Asian continent. The resultant baroclinic conversion of available potential energy (APE) from the climatological-mean flow contributes most efficiently to the APE maintenance of the monthly WP pattern, acting against strong thermal damping effects by anomalous heat exchanges with the underlying ocean and anomalous precipitation in the subtropics and by the effec...
Journal of Applied Meteorology and Climatology | 2011
Satoru Yokoi; Yukari N. Takayabu; Kazuaki Nishii; Hisashi Nakamura; Hirokazu Endo; Hiroki Ichikawa; Tomoshige Inoue; Masahide Kimoto; Yu Kosaka; Takafumi Miyasaka; Kazuhiro Oshima; Naoki Sato; Yoko Tsushima; Masahiro Watanabe
The overall performance of general circulation models is often investigated on the basis of the synthesis of anumberofscalar performancemetricsofindividualmodelsthatmeasurethereproducibilityofdiverseaspects of the climate. Because of physical and dynamic constraints governing the climate, a model’s performance in simulatingacertainaspectoftheclimateissometimesrelatedcloselytothatinsimulatinganotheraspect,which results in significant intermodel correlation between performance metrics. Numerous metrics and intermodel correlations may cause a problem in understanding the evaluation and synthesizing the metrics. One possible way to alleviate this problem is to group the correlated metrics beforehand. This study attempts to use simple cluster analysistogroup43performancemetrics. Two clusteringmethods, theK-means and the Wardmethods, yield considerably similar clustering results, and several aspects of the results are found to be physically and dynamically reasonable. Furthermore, the intermodel correlation between the cluster averages is considerably lower than that between the metrics. These results suggest that the cluster analysis is helpful in obtaining the appropriate grouping. Applications of the clustering results are also discussed.