Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuaki Takabe is active.

Publication


Featured researches published by Kazuaki Takabe.


Pharmacological Reviews | 2008

“Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets

Kazuaki Takabe; Steven W. Paugh; Sheldon Milstien; Sarah Spiegel

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this “inside-out” signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.


Cancer Cell | 2013

Sphingosine-1-Phosphate Links Persistent STAT3 Activation, Chronic Intestinal Inflammation, and Development of Colitis-Associated Cancer

Jie Liang; Masayuki Nagahashi; Eugene Y. Kim; Kuzhuvelil B. Harikumar; Akimitsu Yamada; Wei-Ching Huang; Nitai C. Hait; Jeremy C. Allegood; Megan M. Price; Dorit Avni; Kazuaki Takabe; Tomasz Kordula; Sheldon Milstien; Sarah Spiegel

Inflammatory bowel disease is an important risk factor for colorectal cancer. We show that sphingosine-1-phosphate (S1P) produced by upregulation of sphingosine kinase 1 (SphK1) links chronic intestinal inflammation to colitis-associated cancer (CAC) and both are exacerbated by deletion of Sphk2. S1P is essential for production of the multifunctional NF-κB-regulated cytokine IL-6, persistent activation of the transcription factor STAT3, and consequent upregulation of the S1P receptor, S1PR1. The prodrug FTY720 decreased SphK1 and S1PR1 expression and eliminated the NF-κB/IL-6/STAT3 amplification cascade and development of CAC, even in Sphk2(-/-) mice, and may be useful in treating colon cancer in individuals with ulcerative colitis. Thus, the SphK1/S1P/S1PR1 axis is at the nexus between NF-κB and STAT3 and connects chronic inflammation and CAC.


Current Drug Targets | 2008

Targeting SphK1 as a New Strategy against Cancer

Dai Shida; Kazuaki Takabe; Dmitri Kapitonov; Sheldon Milstien; Sarah Spiegel

Sphingolipid metabolites have emerged as critical players in a number of fundamental biological processes. Among them, sphingosine-1-phosphate (S1P) promotes cell survival and proliferation, in contrast to ceramide and sphingosine, which induce cell growth arrest and apoptosis. These sphingolipids with opposing functions are interconvertible inside cells, suggesting that a finely tuned balance between them can determine cell fate. Sphingosine kinases (SphKs), which catalyze the phosphorylation of sphingosine to S1P, are critical regulators of this balance. Of the two identified SphKs, sphingosine kinase type 1 (SphK1) has been shown to regulate various processes important for cancer progression and will be the focus of this review, since much less is known of biological functions of SphK2, especially in cancer. SphK1 is overexpressed in various types of cancers and upregulation of SphK1 has been associated with tumor angiogenesis and resistance to radiation and chemotherapy. Many growth factors, through their tyrosine kinase receptors (RTKs), stimulate SphK1 leading to a rapid increase in S1P. This S1P in turn can activate S1P receptors and their downstream signaling. Conversely, activation of S1P receptors can induce transactivation of various RTKs. Thus, SphK1 may play important roles in S1P receptor RTK amplification loops. Here we review the role of SphK1 in tumorigenesis, hormonal therapy, chemotherapy resistance, and as a prognostic marker. We will also review studies on the effects of SphK inhibitors in cells in vitro and in animals in vivo and in some clinical trials and highlight the potential of SphK1 as a new target for cancer therapeutics.


Journal of Biological Chemistry | 2010

Estradiol Induces Export of Sphingosine 1-Phosphate from Breast Cancer Cells via ABCC1 and ABCG2

Kazuaki Takabe; Roger H. Kim; Jeremy C. Allegood; Poulami Mitra; Masayuki Nagahashi; Kuzhuvelil B. Harikumar; Nitai C. Hait; Sheldon Milstien; Sarah Spiegel

Sphingosine 1-phosphate (S1P), a potent sphingolipid mediator produced by sphingosine kinase isoenzymes (SphK1 and SphK2), regulates diverse cellular processes important for breast cancer progression acting in an autocrine and/or paracrine manner. Here we show that SphK1, but not SphK2, increased S1P export from MCF-7 cells. Whereas for both estradiol (E2) and epidermal growth factor-activated SphK1 and production of S1P, only E2 stimulated rapid release of S1P and dihydro-S1P from MCF-7 cells. E2-induced S1P and dihydro-S1P export required estrogen receptor-α, not GPR30, and was suppressed either by pharmacological inhibitors or gene silencing of ABCC1 (multidrug resistant protein 1) or ABCG2 (breast cancer resistance protein). Inhibiting these transporters also blocked E2-induced activation of ERK1/2, indicating that E2 activates ERK via downstream signaling of S1P. Taken together, our findings suggest that E2-induced export of S1P mediated by ABCC1 and ABCG2 transporters and consequent activation of S1P receptors may contribute to nongenomic signaling of E2 important for breast cancer pathophysiology.


Cancer Research | 2012

Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis

Masayuki Nagahashi; Eugene Y. Kim; Jeremy C. Allegood; Omar M. Rashid; Akimitsu Yamada; Renping Zhao; Sheldon Milstien; Huiping Zhou; Sarah Spiegel; Kazuaki Takabe

Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that promotes breast cancer progression by diverse mechanisms that remain somewhat unclear. Here we report pharmacologic evidence of a critical role for sphingosine kinase 1 (SphK1) in producing S1P and mediating tumor-induced hemangiogenesis and lymphangiogenesis in a murine model of breast cancer metastasis. S1P levels increased both in the tumor and the circulation. In agreement, serum S1P levels were significantly elevated in stage IIIA human breast cancer patients, compared with age/ethnicity-matched healthy volunteers. However, treatment with the specific SphK1 inhibitor SK1-I suppressed S1P levels, reduced metastases to lymph nodes and lungs, and decreased overall tumor burden of our murine model. Both S1P and angiopoietin 2 (Ang2) stimulated hemangiogenesis and lymphangiogenesis in vitro, whereas SK1-I inhibited each process. We quantified both processes in vivo from the same specimen by combining directed in vivo angiogenesis assays with fluorescence-activated cell sorting, thereby confirming the results obtained in vitro. Notably, SK1-I decreased both processes not only at the primary tumor but also in lymph nodes, with peritumoral lymphatic vessel density reduced in SK1-I-treated animals. Taken together, our findings show that SphK1-produced S1P is a crucial mediator of breast cancer-induced hemangiogenesis and lymphangiogenesis. Our results implicate SphK1 along with S1P as therapeutic targets in breast cancer.


Biochimica et Biophysica Acta | 2009

Export and functions of sphingosine-1-phosphate

Roger H. Kim; Kazuaki Takabe; Sheldon Milstien; Sarah Spiegel

The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.


Cancer Research | 2008

Cross-talk between LPA1 and Epidermal Growth Factor Receptors Mediates Up-regulation of Sphingosine Kinase 1 to Promote Gastric Cancer Cell Motility and Invasion

Dai Shida; Xianjun Fang; Tomasz Kordula; Kazuaki Takabe; Sandrine Lépine; Sergio E. Alvarez; Sheldon Milstien; Sarah Spiegel

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are lysophospholipid mediators of diverse cellular processes important for cancer progression. S1P is produced by two sphingosine kinases, SphK1 and SphK2. Expression of SphK1 is elevated in many cancers. Here, we report that LPA markedly enhanced SphK1 mRNA and protein in gastric cancer MKN1 cells but had no effect on SphK2. LPA also up-regulated SphK1 expression in other human cancer cells that endogenously express the LPA(1) receptor, such as DLD1 colon cancer cells and MDA-MB-231 breast cancer cells, but not in HT29 colon cancer cells or MDA-MB-453 breast cancer cells, which do not express the LPA(1) receptor. An LPA(1) receptor antagonist or down-regulation of its expression prevented SphK1 and S1P(3) receptor up-regulation by LPA. LPA transactivated the epidermal growth factor receptor (EGFR) in these cells, and the EGFR inhibitor AG1478 attenuated the increased SphK1 and S1P(3) expression induced by LPA. Moreover, down-regulation of SphK1 attenuated LPA-stimulated migration and invasion of MNK1 cells yet had no effect on expression of neovascularizing factors, such as interleukin (IL)-8, IL-6, urokinase-type plasminogen activator (uPA), or uPA receptor induced by LPA. Finally, down-regulation of S1P(3), but not S1P(1), also reduced LPA-stimulated migration and invasion of MKN1 cells. Collectively, our results suggest that SphK1 is a convergence point of multiple cell surface receptors for three different ligands, LPA, EGF, and S1P, which have all been implicated in regulation of motility and invasiveness of cancer cells.


Hepatology | 2012

Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes.

Elaine Studer; Xiqiao Zhou; Renping Zhao; Yun F. Wang; Kazuaki Takabe; Masayuki Nagahashi; William M. Pandak; Paul Dent; Sarah Spiegel; Ruihua Shi; Weiren Xu; Xuyuan Liu; Pat Bohdan; Luyong Zhang; Huiping Zhou; Phillip B. Hylemon

Bile acids have been shown to be important regulatory molecules for cells in the liver and gastrointestinal tract. They can activate various cell signaling pathways including extracellular regulated kinase (ERK)1/2 and protein kinase B (AKT) as well as the G‐protein–coupled receptor (GPCR) membrane‐type bile acid receptor (TGR5/M‐BAR). Activation of the ERK1/2 and AKT signaling pathways by conjugated bile acids has been reported to be sensitive to pertussis toxin (PTX) and dominant‐negative Gαi in primary rodent hepatocytes. However, the GPCRs responsible for activation of these pathways have not been identified. Screening GPCRs in the lipid‐activated phylogenetic family (expressed in HEK293 cells) identified sphingosine‐1‐phosphate receptor 2 (S1P2) as being activated by taurocholate (TCA). TCA, taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid (TUDCA), glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and S1P‐induced activation of ERK1/2 and AKT were significantly inhibited by JTE‐013, a S1P2 antagonist, in primary rat hepatocytes. JTE‐013 significantly inhibited hepatic ERK1/2 and AKT activation as well as short heterodimeric partner (SHP) mRNA induction by TCA in the chronic bile fistula rat. Knockdown of the expression of S1P2 by a recombinant lentivirus encoding S1P2 shRNA markedly inhibited the activation of ERK1/2 and AKT by TCA and S1P in rat primary hepatocytes. Primary hepatocytes prepared from S1P2 knock out (S1P2−/−) mice were significantly blunted in the activation of the ERK1/2 and AKT pathways by TCA. Structural modeling of the S1P receptors indicated that only S1P2 can accommodate TCA binding. In summary, all these data support the hypothesis that conjugated bile acids activate the ERK1/2 and AKT signaling pathways primarily through S1P2 in primary rodent hepatocytes. (HEPATOLOGY 2012)


The FASEB Journal | 2013

Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels and the lymphatic network

Masayuki Nagahashi; Eugene Y. Kim; Akimitsu Yamada; Jeremy C. Allegood; Nitai C. Hait; Michael Maceyka; Sheldon Milstien; Kazuaki Takabe; Sarah Spiegel

Sphingosine‐1‐phosphate (S1P), a ligand for 5 specific receptors, is a potent lipid mediator that plays important roles in lymphocyte trafficking and immune responses. S1P is produced inside cells and therefore must be secreted to exert its effects through these receptors. Spinster 2 (Spns2) is one of the cell surface transporters thought to secrete S1P. We have shown that Spns2 can export endogenous S1P from cells and also dihydro‐S1P, which is active at all cell surface S1P receptors. Moreover, Spns2–/– mice have decreased levels of both of these phosphorylated sphingoid bases in blood, accompanied by increases in very long chain ceramide species, and have defective lymphocyte trafficking. Surprisingly, levels of S1P and dihydro‐S1P were increased in lymph from Spns2–/– mice as well as in specific tissues, including lymph nodes, and interstitial fluid. Moreover, lymph nodes from Spns2–/– mice have aberrant lymphatic sinus that appeared collapsed, with reduced numbers of lymphocytes. Our data suggest that Spns2 is an S1P transporter in vivo that plays a role in regulation not only of blood S1P but also lymph node and lymph S1P levels and consequently influences lymphocyte trafficking and lymphatic vessel network organization.—Nagahashi, M., Kim, E. Y., Yamada, A., Ramachandran, S., Allegood, J. C., Hait, N. C., Maceyka, M., Milstien, S., Takabe, K., Spiegel, S. Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels and the lymphatic network. FASEB J. 27, 1001–1011 (2013). www.fasebj.org


World Journal of Gastrointestinal Oncology | 2015

Cancer cachexia, mechanism and treatment

Tomoyoshi Aoyagi; Krista P. Terracina; Ali Raza; Hisahiro Matsubara; Kazuaki Takabe

It is estimated that half of all patients with cancer eventually develop a syndrome of cachexia, with anorexia and a progressive loss of adipose tissue and skeletal muscle mass. Cancer cachexia is characterized by systemic inflammation, negative protein and energy balance, and an involuntary loss of lean body mass. It is an insidious syndrome that not only has a dramatic impact on patient quality of life, but also is associated with poor responses to chemotherapy and decreased survival. Cachexia is still largely an underestimated and untreated condition, despite the fact that multiple mechanisms are reported to be involved in its development, with a number of cytokines postulated to play a role in the etiology of the persistent catabolic state. Existing therapies for cachexia, including orexigenic appetite stimulants, focus on palliation of symptoms and reduction of the distress of patients and families rather than prolongation of life. Recent therapies for the cachectic syndrome involve a multidisciplinary approach. Combination therapy with diet modification and/or exercise has been added to novel pharmaceutical agents, such as Megestrol acetate, medroxyprogesterone, ghrelin, omega-3-fatty acid among others. These agents are reported to have improved survival rates as well as quality of life. In this review, we will discuss the emerging understanding of the mechanisms of cancer cachexia, the current treatment options including multidisciplinary combination therapies, as well an update on new and ongoing clinical trials.

Collaboration


Dive into the Kazuaki Takabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Spiegel

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Akimitsu Yamada

Yokohama City University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sheldon Milstien

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Toshifumi Wakai

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Omar M. Rashid

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Tomoyoshi Aoyagi

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jeremy C. Allegood

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Nitai C. Hait

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Eriko Katsuta

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge