Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuaki Z. Takahashi is active.

Publication


Featured researches published by Kazuaki Z. Takahashi.


Journal of Chemical Physics | 2011

Cutoff radius effect of the isotropic periodic sum and Wolf method in liquid-vapor interfaces of water.

Kazuaki Z. Takahashi; Tetsu Narumi; Kenji Yasuoka

As a more economical but similarly accurate computation method than the Ewald sum, the isotropic periodic sum (IPS) method for nonpolar molecules (IPSn) and polar molecules (IPSp), along with the Wolf method are of interest, but the cutoff radius dependence is an important issue. To evaluate the cutoff radius effect of the three methods, a water-vapor interfacial system has been studied by molecular dynamics. The Wolf method can produce adequate results for surface tension compared to that of the Ewald sum (within 2.9%) at a long enough cutoff radius, r(c). However, the estimation of the electrostatic potential profile and dipole orientational function is poor. The Wolf method cannot estimate electrostatic configuration at r(c) ≤ L(z)∕2 (L(z) is the longest lattice of the system). We have found that the convergence of the surface tension and the electrostatic configuration of the IPSn method is faster than that of the IPSp method. Moreover, the IPSn method is most accurate among the three methods for the same cutoff radius. Furthermore, the behavior of the surface tension against the cutoff radius shows a greater difference for the IPSn and IPSp method. The surface tension of the IPSp method fluctuates and presents a similar result to that of the Ewald sum, but the surface tension for the IPSn method greatly deviates near r(c) = L(z)∕3. The cause of this deviation is the difference between the interfacial configuration of the water surface and the cutoff treatment of the IPS method. The deviation becomes insignificant far from r(c) = L(z)∕3. In spite of this shortcoming, the IPSn method gives the most accurate result in estimating the surface tension at r(c) = L(z)∕2. From all the results in this work, the IPSn and IPSp method have been found to be more accurate than the Wolf method. In conclusion, the surface tension and structure of water-vapor interface can be calculated by the IPSn method when r(c) is greater than or equal to the longest lattice of the system. The IPSp method and the Wolf method require a longer cutoff radius than the longest lattice of the system to estimate interfacial properties.


Journal of Chemical Physics | 2010

Cutoff radius effect of the isotropic periodic sum method in homogeneous system. II. Water

Kazuaki Z. Takahashi; Tetsu Narumi; Kenji Yasuoka

Molecular dynamics simulation has been applied for water to compare the isotropic periodic sum (IPS) method [X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005)] with the Ewald sum based on the diffusion coefficient and liquid structure. The IPS method gives a good estimation for the self-diffusion coefficient at a cutoff radius, r(c), greater than 2.2 nm; however, the radial distribution function g(r) has a notable deviation. The peak of this deviation appears at specific intermolecular distances which are near each cutoff radius and decrease in proportion to the inverse of the cube of r(c). Thus the deviation becomes insignificant (less than 1%) at r(c) greater than 2.2 nm. The distance dependent Kirkwood factor G(k)(r) was also calculated, and since the truncation of a long-range interaction of the cutofflike method (such as cutoff with or without the switch function and the reaction field) shows serious shortcomings for dipole-dipole correlations in bulk water systems, this was observed by comparing the shape to that of the Ewald sum [Y. Yonetani, J. Chem. Phys. 124, 204501 (2006); D. van der Spoel and P. J. van Maaren, J. Chem. Theory Comput. 2, 1 (2006)]. The G(k)(r) of cutofflike method greatly deviate from that of the Ewald sum. However, the discrepancy of G(k)(r) for the IPS method was found to be much less than that of other typical cutofflike methods. In conclusion, the IPS method is an adequately accurate technique for estimating transport coefficients and the liquid structure of water in a homogeneous system at long cutoff distances.


Journal of Chemical Physics | 2007

Cutoff radius effect of isotropic periodic sum method for transport coefficients of Lennard-Jones liquid

Kazuaki Z. Takahashi; Kenji Yasuoka; Tetsu Narumi

Molecular dynamics simulations of a Lennard-Jones (LJ) liquid were applied to compare the isotropic periodic sum (IPS) method [X. Wu and B. R. Brooks, J. Chem. Phys. 122, 044107 (2005)], which can reduce the calculation cost of long-range interactions, such as the Lennard-Jones and Coulombic ones, with the cutoff method for the transport coefficients which includes the self-diffusion coefficient, bulk viscosity, and thermal conductivity. The self-diffusion coefficient, bulk viscosity, and thermal conductivity were estimated with reasonable accuracy if the cutoff distance of the LJ potential for the IPS method was greater than 3sigma. The IPS method is an effective technique for estimating the transport coefficients of the Lennard-Jones liquid in a homogeneous system.


Journal of Chemical Physics | 2011

A combination of the tree-code and IPS method to simulate large scale systems by molecular dynamics.

Kazuaki Z. Takahashi; Tetsu Narumi; Kenji Yasuoka

An IPS/Tree method which is a combination of the isotropic periodic sum (IPS) method and tree-based method was developed for large-scale molecular dynamics simulations, such as biological and polymer systems, that need hundreds of thousands of molecules. The tree-based method uses a hierarchical tree structure to reduce the calculation cost of long-range interactions. IPS/Tree is an efficient method like IPS/DFFT, which is a combination of the IPS method and FFT in calculating large-scale systems that require massively parallel computers. The IPS method has two different versions: IPSn and IPSp. The basic idea is the same expect for the fact that the IPSn method is applied to calculations for point charges, while the IPSp method is used to calculate polar molecules. The concept of the IPS/Tree method is available for both IPSn and IPSp as IPSn/Tree and IPSp/Tree. Even though the accuracy of the Coulomb forces with tree-based method is well known, the accuracy for the combination of the IPS and tree-based methods is unclear. Therefore, in order to evaluate the accuracy of the IPS/Tree method, we performed molecular dynamics simulations for 32,000 bulk water molecules, which contains around 10(5) point charges. IPSn/Tree and IPSp/Tree were both applied to study the interaction calculations of Coulombic forces. The accuracy of the Coulombic forces and other physical properties of bulk water systems were evaluated. The IPSp/Tree method not only has reasonably small error in estimating Coulombic forces but the error was almost the same as the theoretical error of the ordinary tree-based method. These facts show that the algorithm of the tree-based method can be successfully applied to the IPSp method. On the other hand, the IPSn/Tree has a relatively large error, which seems to have been derived from the interaction treatment of the original IPSn method. The self-diffusion and radial distribution functions of water were calculated each by both the IPSn/Tree and IPSp/Tree methods, where both methods showed reasonable agreement with the Ewald method. In conclusion, the IPSp/Tree method is a potentially fast and sufficiently accurate technique for predicting transport coefficients and liquid structures of water in a homogeneous system.


Molecular Simulation | 2012

Cut-off radius effect of the isotropic periodic sum method for polar molecules in a bulk water system

Kazuaki Z. Takahashi; Tetsu Narumi; Kenji Yasuoka

Molecular dynamics simulation has been applied for water to compare the isotropic periodic sum (IPS) method for polar molecules (IPSp) to the normal IPS (IPSn) method and the Ewald sum by evaluating the diffusion coefficient and liquid structure. In our previous study, we have applied the IPSn method for bulk water and found notable deviation of the radial distribution function g(r). In this work, the IPSp gives a good estimation for the potential energy and the self-diffusion coefficient at a cut-off radius, r c, greater than 2.2 nm while avoiding the notable deviation of g(r) which appeared in the case of IPSn. The distance-dependent Kirkwood factor G k (r) was also calculated, and the truncation of a long-range interaction of the cut-off-like method (such as cut-off with or without the switch function and the reaction field) shows serious shortcomings for dipole–dipole correlations in bulk water systems. This was observed by comparing the shape to that of the Ewald sum. G k (r) of the cut-off-like method greatly deviates from that of the Ewald sum. However, the discrepancy of G k (r) for IPSp method was found to be much less than that of other typical cut-off-like methods. We conclude that the IPSp method is an adequately accurate technique for estimating transport coefficients and the liquid structure of water in a homogeneous system at long cut-off distances.


Journal of Computational Chemistry | 2014

Design of a reaction field using a linear-combination-based isotropic periodic sum method

Kazuaki Z. Takahashi

In our previous study (Takahashi et al., J. Chem. Theory Comput. 2012, 8, 4503), we developed the linear‐combination‐based isotropic periodic sum (LIPS) method. The LIPS method is based on the extended isotropic periodic sum theory that produces a ubiquitous interaction potential function to estimate homogeneous and heterogeneous systems. The LIPS theory also provides the procedure to design a periodic reaction field. To demonstrate this, in the present work, a novel reaction field of the LIPS method was developed. The novel reaction field was labeled LIPS‐SW, because it provides an interaction potential function with a shape that resembles that of the switch function method. To evaluate the ability of the LIPS‐SW method to describe in homogeneous and heterogeneous systems, we carried out molecular dynamics (MD) simulations of bulk water and water–vapor interfacial systems using the LIPS‐SW method. The results of these simulations show that the LIPS‐SW method gives higher accuracy than the conventional interaction potential function of the LIPS method. The accuracy of simulating water–vapor interfacial systems was greatly improved, while that of bulk water systems was maintained using the LIPS‐SW method. We conclude that the LIPS‐SW method shows great potential for high‐accuracy, high‐performance computing to allow large scale MD simulations.


Polymers | 2017

Molecular Dynamics Simulations for Resolving Scaling Laws of Polyethylene Melts

Kazuaki Z. Takahashi; Ryuto Nishimura; Kenji Yasuoka; Yuichi Masubuchi

Long-timescale molecular dynamics simulations were performed to estimate the actual physical nature of a united-atom model of polyethylene (PE). Several scaling laws for representative polymer properties are compared to theoretical predictions. Internal structure results indicate a clear departure from theoretical predictions that assume ideal chain statics. Chain motion deviates from predictions that assume ideal motion of short chains. With regard to linear viscoelasticity, the presence or absence of entanglements strongly affects the duration of the theoretical behavior. Overall, the results indicate that Gaussian statics and dynamics are not necessarily established for real atomistic models of PE. Moreover, the actual physical nature should be carefully considered when using atomistic models for applications that expect typical polymer behaviors.


Molecular Simulation | 2015

Application of isotropic periodic sum method for 4-pentyl-4′-cyanobiphenyl liquid crystal

Takuma Nozawa; Kazuaki Z. Takahashi; Shun Kameoka; Tetsu Narumi; Kenji Yasuoka

In future large-scale molecular dynamics (MD) simulations that will use parallel computing, the isotropic periodic sum (IPS) method is expected to effectively reduce the cost of interaction calculations while maintaining adequate accuracy. To assess the accuracy of this method in estimating low-charge-density polymer systems, we performed atomistic MD simulations of the bulk state of liquid crystal systems based on 4-pentyl-4′-cyanobiphenyl (5CB). In conditions of 270 K ≤ T ≤ 320 K and a normal pressure, the temperature dependence of the density, potential energy and order parameter was estimated using the IPS and Ewald sum method. The results of the IPS method and Ewald sum were consistent within the range of error. In conditions close to the phase transition point, however, the averaged values of potential energy and order parameter had a small difference. We concluded that the fundamental physical properties for the bulk state of 5CB systems are determined reasonably by using the IPS method, at least in conditions that are not close to the phase transition point.


Molecular Simulation | 2015

A determination of liquid–vapour interfacial properties for methanol using a linear-combination-based isotropic periodic sum

Kazuaki Z. Takahashi; Kenji Yasuoka

We performed molecular dynamics simulations of the methanol liquid–vapour interfacial systems for a wide temperature range of 200–350 K. The linear-combination-based isotropic periodic sum (LIPS) method was used for estimating Coulombic interactions of the systems. The temperature dependence of the liquid and vapour phase densities, surface thickness and surface tension using the LIPS method was almost equal to that of the Ewald sum method. The temperature dependence of the electrostatic potential profile using the LIPS method was very similar to that of the Ewald sum method. We conclude that the LIPS method provides a reasonable accuracy in determining the liquid–vapour interfacial properties of polar molecules for many temperature conditions.


Journal of Computational Chemistry | 2015

Comparison of the accuracy of periodic reaction field methods in molecular dynamics simulations of a model liquid crystal system

Takuma Nozawa; Kazuaki Z. Takahashi; Tetsu Narumi; Kenji Yasuoka

A periodic reaction field (PRF) method is a technique to estimate long‐range interactions. The method has the potential to effectively reduce the computational cost while maintaining adequate accuracy. We performed molecular dynamics (MD) simulations of a model liquid‐crystal system to assess the accuracy of some variations of the PRF method in low‐charge‐density systems. All the methods had adequate accuracy compared with the results of the particle mesh Ewald (PME) method, except for a few simulation conditions. Furthermore, in all of the simulation conditions, one of the PRF methods had the same accuracy as the PME method.

Collaboration


Dive into the Kazuaki Z. Takahashi's collaboration.

Top Co-Authors

Avatar

Kenji Yasuoka

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar

Tetsu Narumi

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Ichi Fukuda

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge