Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhide Hayakawa is active.

Publication


Featured researches published by Kazuhide Hayakawa.


Limnology | 2005

Three-dimensional fluorescence as a tool for investigating the dynamics of dissolved organic matter in the Lake Biwa watershed

Khan M. G. Mostofa; Takahito Yoshioka; Eiichi Konohira; Eiichiro Tanoue; Kazuhide Hayakawa; Mikio Takahashi

Quantitative and qualitative characterizations of dissolved organic matter (DOM) were carried out at the watershed level in central Japan by measuring dissolved organic carbon (DOC) concentration and the three-dimensional excitation–emission matrix (3-D EEM). DOC concentration was low (mean 37 ± 19 µM C) in the upstream waters, whereas, in general, it increased toward the downstream areas (mean 92 ± 47 µM C). Significant variations in DOC concentration were detected among rivers and channels. DOC concentration in the epilimnion of Lake Biwa increased during the summer period and decreased during the winter period. The lake hypolimnion has lower DOC concentration (mean 87 ± 7 µM C) compared with the epilimnion (107 ± 15 µM C). Fulvic acid (FA)-like substances in the DOM were directly characterized by 3-D EEM. The fluorescence peak for upstream DOM was found in regions with longer wavelengths (excitation/emission 386 ± 6/476 ± 5 nm) compared with downstream and lake DOM (351 ± 12/446 ± 15 nm and 341 ± 6/434 ± 6 nm, respectively). The DOC concentration is correlated with fluorescence peak intensity of FA-like substances in DOM in river waters. Such a relationship was not found in lake DOM. A blueshift of the fluorescence peak from upstream to lake DOM was observed. A decrease in fluorescence intensities was also detected during the summer period. These results may suggest that the degradation of FA-like substances in DOM occurs from natural solar irradiation. Protein-like fluorescence was significantly detected in the lake epilimnion during the summer period. A linear relationship between DOC concentration and protein-like fluorescence indicated that an autochthonous input of DOM gave rise to the increase in DOC concentration in the lake epilimnion during the summer. These results may suggest that the 3-D EEM can be used as a tool for the investigation of DOM dynamics at the watershed level with concurrent measurement of DOC concentration and the fluorescence properties of fulvic acid-like and protein-like substances.


Limnology | 2003

Dissolved organic carbon and fluorescence in Lake Hovsgol : factors reducing humic content of the lake water

Kazuhide Hayakawa; Tatsuki Sekino; Takahito Yoshioka; Masahiro Maruo; Michio Kumagai

Abstract Lake Hovsgol is a large tectonic lake located in northern Mongolia, which has extremely transparent lake water. In our survey, the dissolved organic carbon of the lake water was 80–100 μM-C, and the fluorescence intensity in an excitation and emission matrix was very low. The brown color and high content of humic substances in river water flowing from a watershed consisting of grassland and forests rapidly declined in the coastal area of the lake. The decrease in humic content may be due not only to dilution by the lake water but also to flocculation and photobleaching. Among tectonic lakes in Asia, Lake Hovsgol would appear to have unique biological and hydrological features that reduce humic content and help to maintain water transparency.


Limnology | 2007

Distribution and characteristics of molecular size fractions of freshwater-dissolved organic matter in watershed environments: its implication to degradation

Takahito Yoshioka; Khan M. G. Mostofa; Eiichi Konohira; Eiichiro Tanoue; Kazuhide Hayakawa; Mikio Takahashi; Shingo Ueda; Masanori Katsuyama; T. V. Khodzher; Nadezhda V. Bashenkhaeva; Irina Korovyakova; L. M. Sorokovikova; Ludomira Gorbunova

Distributions of molecular size and fluorescence properties of dissolved organic matter (DOM) in the Lake Biwa and Lake Baikal watersheds were investigated using the cross-flow ultrafiltration technique and three-dimensional fluorescence measurements. From the fluorescence properties, protein-like substances were usually found in the 0.1 μm-GF/F fraction (the Durapore membrane retentate of the GF/F filtrate) of the lake DOM. The results indicated autochthonous production of protein-like organic-matters in the lake environment. Fulvic acid (FA)-like components were composed of two fractions with respect to fluorescence properties and molecular size. Two FA-like fluorescence peaks, which showed different fluorescence peak positions in the excitation-emission matrix (EEM), were partly fractionated by the molecular size of 5000 daltons (5 kDa). The FA-like fluorescence peak position of the <5-kDa fraction was observed at the shorter wavelength region compared with that of the fraction between 5 kDa and 0.1 μm (5 kDa20.1 μm fraction). A blue shift of the FA-like fluorescence peak position as well as a decrease in the molecular size of the DOM was observed in lake samples. The relative contribution of the <5 kDa fraction to the DOC concentration was high in lake waters (68%–79%) compared with river waters (44%–68%), suggesting characteristic changes in molecular size between riverine and lacustrine DOM. DOM of the 5 kDa–0.1 μm fraction was relatively higher in river waters than in lake waters. These findings coincided with in situ distributions of the fluorescence properties and molecular size of DOM found in both stream and lake environments. These results indicate that FA-like substances from forested watersheds are decomposed qualitatively and quantitatively in the river-lake environment by photochemical and biological processes.


Limnology | 2001

Effects of seston on ultraviolet attenuation in Lake Biwa

Warwick F. Vincent; Michio Kumagai; Claude Belzile; Kanako Ishikawa; Kazuhide Hayakawa

Abstract We examined the attenuation of underwater ultraviolet (UV) radiation and photosynthetically available radiation (PAR) in Lake Biwa, Japan, at offshore and inshore sites and under contrasting stratification and mixing regimes. There were large spatial differences in the water column transparency to both wavebands, despite little change in concentrations of dissolved organic carbon (DOC). The 1% of surface irradiance depth varied from 0.3 to 2.7 m at 305 nm, from 0.8 to 6.3 m at 380 nm, and from 2.3 to 12.8 m for PAR. Both PAR and UV transparency declined abruptly in the South Basin of the lake when a typhoon caused the resuspension of sediments. The water column ratio of UV to PAR increased by 30% at all stations over the course of a 3-week sampling period associated with the general increase in phytoplankton concentrations. At several sites, the diffuse attenuation coefficient for UV radiation deviated substantially from that predicted from UV-DOC models. A significantly positive linear relationship was found between UV attenuation (Kd determined with a profiling UV radiometer) and the beam attenuation coefficient at 660 nm as measured by transmissometer. These results indicate that scattering and absorption by particulate matter can reduce UV transparency to below that inferred from DOC concentrations, and that current UV-exposure models should be modified to incorporate this effect.


Limnology | 2000

Effect of cyanobacterial blooms on thermal stratification

Michio Kumagai; Shin-ichi Nakano; Chunmeng Jiao; Kazuhide Hayakawa; Shigeo Tsujimura; T. Nakajima; J.-J. Frenette; A. Quesada

Abstract Enclosure experiments were performed at Akanoi Bay, Lake Biwa, in 1995 to determine whether the blooms of cyanobacterial algae changed thermal stratification in the lake. We used four rectangular enclosures, each 10 m × 10 m, with a volume of 200 m3, which were open to the sediments. Two enclosures, A and B, were mixed artificially by aquatic pumps from 1000 to 1400 every day, and the other two enclosures, C and D, were controls with no mixing. The experiment was conducted during late summer from August 3 to September 27. Chlorophyll a concentrations were highest in enclosure D, followed by enclosure C, both of which were controls without mixing. Enclosure A had lower concentrations than enclosures C and D, and enclosure B had the lowest concentrations. No large cyanobacterial algae blooms of Anabaena sp. and Microcystis sp. were seen in the mixed enclosures A and B. In enclosures C and D, blooms of Anabaena sp. occurred in the middle of August, and Microcystis sp. later became dominant in enclosure D at the end of August. In enclosure D, the water temperature changed over the diel cycle before August 17, with thermal stratification during the day and complete mixing at night. After August 17, as Anabaena sp. and Microcystis sp. became dominant, the temperature at the bottom of the enclosure did not change clearly over the 24-h cycle. The APE (available potential energy) density (a measure of water column stability) in the enclosures increased by almost 100% when the biovolume of Anabaena sp. + Microcystis sp. exceeded 20 mm3 l−1. These results indicate that blooms of Anabaena sp. and Microcystis sp. can increase the available potential energy in the water column and create more stable stratification for their growth.


Limnology | 2002

Fatty acid composition as an indicator of physiological condition of the cyanobacterium Microcystis aeruginosa

Kazuhide Hayakawa; Shigeo Tsujimura; G. E. Napolitano; Shin-ichi Nakano; Michio Kumagai; T. Nakajima; Chunmeng Jiao

Abstract The present study examined the fatty acid composition of Microcystis aeruginosa grown in a batch culture and that of Microcystis-dominated plankton collected in an experimental enclosure in a shallow, eutrophic embayment of Lake Biwa (Akanoi Bay). In pure culture, we detected 16 : 0, 18 : 2ω6, 18 : 3ω3, 18 : 3ω6, and 18 : 4ω3 acids as major fatty acids of M. aeruginosa, with trace amounts of C20 polyunsaturated fatty acids. In both pure culture and the field enclosure, the ratio of total fatty acid weight to dry weight decreased with decreasing availability of dissolved inorganic nitrogen. The ω3/ω6 ratios of C18 polyunsaturated fatty acids [(18 : 3ω3 + 18 : 4ω3)/(18 : 2ω6 + 18 : 3ω6)] varied greatly (range, 2–5) in response to the changes in physical and chemical conditions for Microcystis growth. Most notably, the ω3/ω6 fatty acid ratios were significantly positively correlated with the growth rate of cells in a batch culture. We suggest that the fatty acid composition is a useful indicator of the physiological state of Microcystis in freshwater lakes.


Environmental Science & Technology | 2010

Role of photodegradation in the fate of fluorescent whitening agents (FWAs) in lacustrine environments.

Nobuhisa Yamaji; Kazuhide Hayakawa; Hideshige Takada

To understand the behavior of fluorescent whitening agents (FWAs) in a lake environment, we measured the quantities of two FWAs, DSBP, and DAS1, in water samples collected monthly from six depths of the water column, in sediment trap sample, and a sediment core sample from Lake Biwa, the largest lake in Japan, and in sewage, effluent, and river water in the lakes catchment. We conducted a sunlight exposure experiment and developed a method to estimate the degree of photodegradation by using DSBP/DAS1 ratio in environmental samples. The observed seasonal pattern of the vertical distributions of the FWAs in the water column can be explained by stratification of the water, photodegradation in the euphotic zone, the subsurface loading of river water, and their seasonal changes. The DSBP/DAS1 ratio was much lower in the lake water (0.12-0.52) than in sewage (6.4 ± 1.1), indicating intensive photodegradation in rivers and the lake. A mass balance calculation and DSBP/DAS1 ratio demonstrated that ∼95% of DSBP and ∼55% of DAS1 supplied in sewage were photodegraded in inflowing rivers and the lake, and that sedimentation to the lake bottom is insignificant for DSBP and ∼35% for DAS1. More intensive photodegradation of FWAs, especially more photodegradable DSBP, in Lake Biwa than in Greifensee, a lake in Switzerland, was suggested, attributable to the longer residence time of water in and the larger size of Lake Biwa. These results demonstrate that photodegradation is important to the fate of FWAs in lacustrine environments, and that FWAs and the DSBP/DAS1 ratio are useful markers for understanding the role of direct photodegradation in the behavior of water-soluble chemicals in aquatic environments.


Limnology | 2004

Fluorescence spectroscopic characterization of dissolved organic matter in the waters of Lake Fuxian and adjacent rivers in Yunnan, China

Kazuhide Hayakawa; Mitsuru Sakamoto; Michio Kumagai; Chunmeng Jiao; Xueliang Song; Zixiong Zhang

The fluorescence properties of dissolved organic matter (DOM) in the water of Lake Fuxian and its adjacent rivers on the Yunnan Plateau, southwestern China, were studied to specify the characterization of DOM in the lake and river waters. The fluorescence properties with the excitation–emission matrix in the water of Lake Fuxian are different from those in the river water. The differences in these properties between the lake and river water could arise not only from their sources but also from the reactivity of the photobleaching of DOM. In the lake, the supplying of allochthonous fluorescent materials from inflowing rivers to the fluorescent DOM is less significant than the photobleaching of fluorescent substances.


Limnology | 2007

Distribution and fluxes of fluorescent whitening agents discharged from domestic wastewater into small rivers with seasonal changes of flow rates

Kazuhide Hayakawa; Ryouji Okumura; Hiroki Yamamoto; Manabu Fujiwara; Nobuhisa Yamaji; Hideshige Takada; Masakazu Kanematsu; Yoshihisa Shimizu

Distributions of fluorescent whitening agents (FWAs) in the waters of a small river system in Japan were surveyed in summer when the water volume rose following high precipitation and in winter when it subsided as precipitation declined. The main source of FWAs in the river system was domestic wastewater, and fluxes in the tributaries depended on the size of the residential population and the elimination rates of sewage treatment systems in their catchments, although FWA concentrations in the river itself fluctuated, largely as a consequence of dilution by heavy precipitation and unstable water flows in the small-sized river system. The FWA concentrations in the river waterduring summer decreased not only by the dilution of river water but also by photodegradation because of more prolonged exposure to sunlight.


Limnology | 2016

Py-GC/MS analysis of sediments from Lake Biwa, Japan: characterization and sources of humic acids

Yasuro Fuse; Takahiro Okamoto; Kazuhide Hayakawa; Hajime Karatani; Etsu Yamada

Humic substances extracted and purified from bottom sediments of northern Lake Biwa, Japan, in November 2012 and 2013 were characterized using elemental analysis, Fourier-transform infrared spectroscopy, hydrogen-1 nuclear magnetic resonance (1H NMR) analysis, and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). The infrared (IR) bands in the spectra of humic acids showed the presence of amide linkages and polysaccharides. Results of 1H NMR analysis showed that the humic acids contained approximately twice the number of aliphatic protons as those in the Japanese soil standards used for comparison. Results of the Py-GC/MS analysis, which evaluates pyrolysis temperature dependency of the amount of pyrolysis products, showed that the generation of pyrolysis products in humic acids also differed from that in Japanese soil standards but was similar to that of phytoplankton in Lake Biwa. This analysis method is the first to provide extensive information about the chemical structure of humic substances; conventional Py-GC/MS provides limited information for a single temperature. Data suggest that humic acids in lake sediments are related to chemical characteristics of phytoplankton. Results shed new light on the origins of humic substances in deep-water-lake sediments and provide insights into material recycling in such sediments.

Collaboration


Dive into the Kazuhide Hayakawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiro Maruo

University of Shiga Prefecture

View shared research outputs
Top Co-Authors

Avatar

Takuo Nakajima

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Cong-Qiang Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge